
Realising nondeterministic I/O in the
Glasgow Haskell Compiler

Technical Report Frank-17

David Sabel

Institut für Informatik
Johann Wolfgang Goethe-Universität

Frankfurt, Germany
Email: sabel@informatik.uni-frankfurt.de

December 3, 2003

Abstract

In this paper we demonstrate how to relate the semantics given by the non-
deterministic call-by-need calculus FUNDIO [SS03] to Haskell. After introducing
new correct program transformations for FUNDIO, we translate the core language
used in the Glasgow Haskell Compiler into the FUNDIO language, where the IO
construct of FUNDIO corresponds to direct-call IO-actions in Haskell. We sketch
the investigations of [Sab03b] where a lot of program transformations performed
by the compiler have been shown to be correct w.r.t. the FUNDIO semantics. This
enabled us to achieve a FUNDIO-compatible Haskell-compiler, by turning off not
yet investigated transformations and the small set of incompatible transformations.
With this compiler, Haskell programs which use the extension unsafePerformIO
in arbitrary contexts, can be compiled in a ’safe’ manner.

Contents

1 Introduction 2
1.1 Overview . 3

2 The FUNDIO calculus 4
2.1 Syntax . 4
2.2 Contexts . 5
2.3 Reduction rules . 6
2.4 Contextual equivalence . 9

2.4.1 IO-multisets and IO-sequences . 9
2.4.2 Termination . 9
2.4.3 Contextual equivalence . 10

2.5 Program transformations . 10
2.6 Transformations on case expressions . 12
2.7 Transformations for copying expressions 12
2.8 Strictness optimisation . 14
2.9 Results . 14

3 The relation between FUNDIO and Haskell 16
3.1 Our representation of the core language of the GHC 16
3.2 Translating the GHC core language to FUNDIO 18

3.2.1 The translation . 18
3.2.2 Examples . 20
3.2.3 Correctness of program transformations on the GHC core language 21

3.3 Classification of the transformations on GHC core 21
3.4 Local transformations . 22

3.4.1 Variants of beta reduction . 22
3.4.2 Transformations on let(rec)-expressions 23
3.4.3 Transformations on case-expressions 25
3.4.4 Transformations on let(rec)- and case-expressions 29
3.4.5 Strictness-based transformations 30
3.4.6 Eta-expansion and -reduction . 31
3.4.7 Results . 32

3.5 Global transformations . 33
3.5.1 Correct transformations . 33
3.5.2 Incorrect transformations . 34
3.5.3 Not yet investigated transformations 35
3.5.4 Results . 36

4 Conclusions 36

5 Further work 36

6 Acknowledgements 37

References 37

1 Introduction

This paper gives a summary of the work in [Sab03b] which is based upon the FUNDIO
calculus [SS03]. The nondeterministic call-by-need calculus FUNDIO provides an IO-
interface which can be used to model direct-call IO within Haskell, i.e. the IO-actions

2

need no special treatment like monads. The language is no longer pure in the usual
meaning, but [SS03] defines a contextual equivalence for FUNDIO, which enables us to
compare programs and to substitute a term with a contextual equivalent expression.
The Haskell extension unsafePerformIO makes an easy implementation of direct-call
IO possible, i.e. a direct-call IO-action can be built by applying unsafePerformIO

to a monadic IO-action. For example, a direct-call IO-action dPutChar which prints a
character to the standard output can be defined by using the monadic function putChar:

dPutChar :: Char -> ()

dPutChar c = unsafePerformIO (putChar c)

But the use of unsafePerformIO in existing compilers is limited to special cases,
i.e. unsafePerformIO should only be used to implement a function if the function
can also be implemented by using conventional methods1. The criteria for safe uses
of unsafePerformIO are not formally specified and are frequently discussed on sev-
eral Haskell-related mailing lists. Our experiences show that programs, which use
unsafePerformIO in arbitrary contexts, i.e. these uses are unsafe in the usual sense,
show up different IO-behavior when compiling with different levels of optimisation. So
our aim is to perform only such optimisations which are compatible with the FUNDIO
semantics. The calculus does not specify the order of evaluating IO-actions, i.e. to
sequentialize the execution of IO-actions special provisions must be made. But FUN-
DIO specifies how often IO-actions are evaluated, i.e. it only allows permutations of
IO-actions. So, programs with different numbers of IO-actions are never contextually
equivalent in FUNDIO.

We have implemented the results in the Glasgow Haskell Compiler (GHC), by turn-
ing off FUNDIO-incompatible program transformations and those that have not yet
been investigated, and achieved a modification of the compiler which is called HasFuse
[Sab03a].

1.1 Overview

In Section 2 we present the FUNDIO-calculus as defined in [SS03], which is a nonde-
terministic call-by-need lambda-calculus, where the nondeterminism is used to model
an IO-interface. We present a contextual preorder and equivalence, which is then used
to define the correctness of a program transformation. After describing a large set of
correct program transformations of [SS03] we extend this set by introducing some new
transformations. In Section 3 we present a translation from the core language used in
the Glasgow Haskell Compiler to the FUNDIO language. Based on this translation we
define correctness for program transformations performed in the GHC. Then we inves-
tigate a lot of program transformations regarding the defined correctness. In the latter
sections we summarize the work and suggest directions for further work.

1For example, [The03, Chapter 13] gives some hints when it is safe to use unsafePerformIO.

3

2 The FUNDIO calculus

In this section we give an overview of the FUNDIO-language and its corresponding
reduction rules. After that, a contextual preorder is presented, which is used to define a
correct program transformation. The section ends by presenting a large set of program
transformations, which have been shown to be correct in [SS03] and [Sab03b].

2.1 Syntax

We define the FUNDIO language similarly to [SS03]:

Definition 2.1. (LFUNDIO) We assume there is a finite set C of constructors with
|C| = N ≥ 2. The constructors are numbered where ci denotes the i-th constructor. The
constructor cN is the special constant lambda, which can only occur as a pattern in a
case alternative. With ar(ci) we denote the arity of constructor ci. Figure 1 presents
the language LFUNDIO. Valid expressions can be derived starting with the nonterminal
E, where the following conditions must hold: The alternatives of a case expression are
complete, i.e. for every constructor c ∈ C there is exactly one alternative. The variables
Vi in a letrec expression or a case pattern are distinct and the order of the bindings
in a letrec environment is commutable, i.e. we do not distinguish expressions with
commuted bindings. letrec expressions with an empty set of bindings are allowed, e.g.
(letrec {} in s) is a valid expression (if s is valid).

E ::= V (variable)
| (ci E1 . . .Ear(c)) (constructor application)
| (IO E) (IO expression)
| (case E Alt1 . . .AltN) (case expression)
| (E1 E2) (application)
| (λV.E) (abstraction)
| (letrec V1 = E1, . . . , Vn = En in E) (letrec expression)

Alt ::= (Pat → E) (alternative)

Pat ::= (cj V1 . . . Var(cj)) (pattern)

where i ∈ {1, . . . , N − 1} and j ∈ {1, . . . N}.

Figure 1: LFUNDIO - The FUNDIO language

Convention 2.2. We use the following notation to abbreviate some expressions.

• Instead of (letrec x1 = E1, . . . , xn = En in t), we also write (letrec Env in t).

4

• Instead of (case s Alt1 . . . Altn), we also write (case s Alts).

• If the meaning is clear, we omit parenthesis. The application is left-associative,
i.e. (a1 . . . an) is an abbreviation for (. . . ((a1 a2) . . .) an).

• Instead of (λx1.(λx2.(. . . (λxn.s)) . . .), we also use (λx1 . . . xn.s).

In the following we use free and bound variables and the disjoint variable convention
as well as open and closed terms. The definitions for the FUNDIO calculus can be found
in [SS03, Sab03b].

2.2 Contexts

A context is an expression with a hole in it. We represent the hole by the symbol [·].

Definition 2.3. (Context) A context C is defined by the following grammar.

C ::= [·] | (λx.C) | (C E) | (E C) | (IO C) | (c E . . . E C E . . . E)

| (case C Alts) | (case E Alt1 . . . (Pat → C) . . . Altn)

| (letrec x1 = E1, . . . , xn = En in C)

| (letrec x1 = E1, . . . , xi−1 = Ei−1, xi = C, xi+1 = Ei+1, . . . xn = En in E)

If D is a context, then we denote D[t] as the expression which arises by placing
t instead of the hole in D. Reduction contexts are those contexts, in which we will
perform (especially normal order) reductions:

Definition 2.4. (Reduction context) The class R of reduction contexts is built upon
the subclass R− of weak reduction contexts. Both classes are defined by the following
grammar:

R− ::= [·] | (R− E) | (case R− Alts) | (IO R−)

R ::= R− | (letrec x1 = E1, . . . , xn = En in R−)
| (letrec x1 = R−

1 , . . . , xj = R−
j [xj−1], . . . in R−[xj])

where R−, R−
i are contexts of class R−.

Another context class are the surface contexts. These contexts do not have a hole in
the body of an abstraction.

Definition 2.5. (Surface context) A surface context S is defined by the following
grammar:

S ::= [·] | (S E) | (E S) | (IO S) | (c E . . . E S E . . . E) | (case S Alts)

| (case E Alt1 . . . (Pat → S) . . . Altn) | (letrec x1 = E1, . . . , xn = En in S)

| (letrec x1 = E1, . . . , xi−1 = Ei−1, xi = S, xi+1 = Ei+1, . . . xn = En in E)

5

2.3 Reduction rules

The following definition is similar to [SS03] and presents the reduction rules of the
FUNDIO calculus.

Definition 2.6. (Reduction rules) Figures 2 and 3 define the reduction rules. A rule

(name) a −→ b

has the following meaning: An expression of form a can be replaced by an expression of
form b by using the rule (name).

We denote the union of (cp-in) and (cp-e) with (cp), the union of (llet-in) and (llet-
e) with (llet), the union of (case-c), (case-in), (case-e) and (case-lam) with (case) and
the union of (IOr-c), (IOr-in) and (IOr-e) with (IOr). Similar to [SS03] we define the
reduction (lll) as the union of (llet), (lapp), (lcase) and (IOlet).

If necessary, we label the reduction with the used rule and/or with the context, where

the reduction takes place, e.g.
R,case−−−→ is a (case)-reduction inside a reduction context. We

denote the transitive closure of a reduction with the symbol +, the reflexive-transitive

closure with ∗. For example,
(llet)+−−−→ is the transitive closure of

llet−−→. Note that the (IOr)

reduction is nondeterministic, it models IO-actions in the following way: If (IO c)
IOr−−→ d,

then after outputting the output value c, the input value d is obtained nondeterministi-
cally. The idea is that the user inputs the input value, so the program does not know,
what the result of the (IOr) reduction is.

Instead of defining the normal order reduction
n−−→ of the FUNDIO calculus explicitly,

we refer to [SS03] and make some remarks about it. The normal order redex of a term t
is the subexpression on which the normal order reduction (i.e. one of the reduction rules
of Definition 2.6) is applied. [SS03, Lemma 5.4] shows that for all terms t ∈ LFUNDIO

holds:

• If t has a normal order redex, then this redex is unique.

• If the normal order reduction of t is a deterministic reduction rule (i.e. not an
(IOr) reduction), then the normal order reduction is unique.

• If the normal order reduction of t is an (IOr) reduction and the IO-pair of the
reduction is given, then the normal order reduction is unique.

Because FUNDIO is a call-by-need calculus, the normal order reduction respects sharing.
In contrast to [AFM+95] in the expression ((letrec x = (letrec y = sy in y) in x) t)
the normal order reduction of FUNDIO does firstly a (lapp) reduction before adjusting
the environment with a (llet) reduction. We give another example of reducing a term
by normal order reductions:

6

(lbeta) ((λx. s) t) −→ (letrec x = t in s)

(cp-in) (letrec x1 = s1, x2 = x1, . . . , xj = xj−1, Env in C[xj])
−→ (letrec x1 = s1, x2 = x1, . . . , xj = xj−1, Env in C[s1])
where s1 is an abstraction

(cp-e) (letrec x1 = s1, x2 = x1, . . . , xj = xj−1, xj+1 = C[xj], Env in s)
−→ (letrec x1 = s1, x2 = x1, . . . , xj = xj−1, xj+1 = C[s1], Env in s)
where s1 is an abstraction

(llet-in) (letrec x1 = s1, . . . , xn = sn in (letrec y1 = t1, . . . , ym = tm in r))
−→ (letrec x1 = s1, . . . , xn = sn, y1 = t1, . . . , ym = tm in r)

(llet-e) (letrec x1 = s1, . . . ,

xi = (letrec y1 = t1, . . . , ym = tm in si), . . . ,
xn = sn

in r)
→ (letrec x1 = s1, . . . , xn = sn, y1 = t1, . . . , ym = tm in r)

(lapp) ((letrec Env in t) s) −→ (letrec Env in (t s))

(lcase) (case (letrec Env in t) Alts) −→ (letrec Env in (case t Alts))

(case-c) (case (ci t1 . . . tn) . . . ((ci y1 . . . yn) → t) . . .)
−→ (letrec y1 = t1, . . . , yn = tn in t)

(case-lam) (case (λx. s) . . . (lambda→ t) . . .) −→ (letrec {} in t)

(case-in) (letrec x1 = (ci t1 . . . tn), x2 = x1, . . . , xm = xm−1, . . .

in C[case xm . . . ((ci z1 . . . zn) → t)])
−→ (letrec x1 = (ci y1 . . . yn), y1 = t1, . . . , yn = tn

x2 = x1, . . . , xm = xm−1, . . .

in C[(letrec z1 = y1, . . . , zn = yn in t)])
where the yi are fresh variables

(case-e) (letrec x1 = (ci t1 . . . tn), x2 = x1, . . . , xm = xm−1, . . .

u = C[case xm . . . ((ci z1 . . . zn) → r1)]
in r2)
−→ (letrec x1 = (ci t1 . . . tn),

y1 = t1, . . . , yn = tn,

x2 = x1, . . . , xm = xm−1, . . .

u = C[(letrec z1 = y1, . . . , zn = yn in r1)]
in r2)

where the yi are fresh variables

Figure 2: Reduction rules of the FUNDIO calculus

7

(IOlet) (IO (letrec Env in s)) −→ (letrec Env in (IO s))

In the following three rules c and d are constants and (c, d) is the IO-pair
of the reduction.

(IOr-c) (IO c) −→ d

(IOr-in) (letrec x1 = c, x2 = x1, . . . , xm = xm−1, Env in C[(IO xm)])
−→ (letrec x1 = c, x2 = x1, . . . , xm = xm−1, Env in C[d])

(IOr-e) (letrec x1 = c, x2 = x1, . . . , xm = xm−1, u = C[(IO xm)], Env in r)
−→ (letrec x1 = c, x2 = x1, . . . , xm = xm−1, u = C[d], Env in r)

Figure 3: IO reduction rules of the FUNDIO calculus

Example 2.7. We reduce the following expression t in normal order. Let c, d ∈ C be
constants.

t = (letrec x1 = ((λy.y) c), x2 = x1, x3 = (case x2 . . . (c → c) . . .) in (IO x3))
n,lbeta−−−−→ (letrec x1 = (letrec y = c in y), x2 = x1, x3 = (case x2 . . . (c → c) . . .)

in (IO x3))
n,llet−e−−−−−→ (letrec x1 = y, y = c, x2 = x1, x3 = (case x2 . . . (c → c) . . .) in (IO x3))

n,case−e−−−−−−→ (letrec x1 = y, y = c, x2 = x1, x3 = (letrec {} in c) in (IO x3))
n,llet−e−−−−−→ (letrec x1 = y, y = c, x2 = x1, x3 = c in (IO x3))

n,IOr−in−−−−−−→ (letrec x1 = y, y = c, x2 = x1, x3 = c in d)
No further normal order reduction is applicable.

We now define values and WHNF s:

Definition 2.8. (Value and WHNF) A value is a constructor application or an
abstraction. A weak head normal form (WHNF) is

• a value, or

• an expression of the form (letrec Env in t), where t is a value, or

• an expression of the form (letrec x1 = (c t1 . . . tar(c)), x2 = x1, . . . , xm =
xm−1, Env in xm).

The last expression of example 2.7 where no rule is applicable is a WHNF, because d
is a value. Note that a WHNF has no normal order reduction.

Definition 2.9. (bot-term) Let t be a closed expression. We say t is a bot-term, if t
has no normal order reduction, that ends with a WHNF.

8

[SS03] shows that all bot-terms are contextually equivalent and that their equivalence
class is the least element of the contextual preorder.

2.4 Contextual equivalence

A reduction sequence s1 → . . . → sn is a sequence of reductions. If not otherwise
specified, these are reductions of the FUNDIO calculus. We call a reduction sequence
starting with an expression t, that consists only of normal order reductions as the NO-
reduction sequence of t. In the following we firstly define IO-multisets, IO-sequences and
termination and finally the contextual equivalence is defined.

2.4.1 IO-multisets and IO-sequences

Definition 2.10. (IO-pairs, IO-multisets and IO-sequences) An IO-pair is a pair
(a, b), where a and b are constants of C:

• The IO-pair of an (IOr) reduction is the pair (c, d) consisting of the output and
input value as defined in figure 3.

• Reductions of type a with a 6∈ {(IOr-c), (IOr-in), (IOr-e)} do not have an IO-pair.

An IO-sequence is a finite sequence of IO-pairs. The IO-sequence IOS(s1 → . . . → sn)
of a reduction sequence s1 → . . . → sn is defined as follows:

• If s1 → s2 is an (IOr) reduction with IO-pair (a, b), then
IOS(s1 → . . . → sn) := (a, b), IOS(s2 → . . . → sn).

• If s1 → s2 is not an (IOr) reduction, then
IOS(s1 → . . . → sn) := IOS(s2 → . . . → sn).

An IO-multiset is a finite set of IO-pairs. The IO-multiset IOM(s1 → . . . → sn)
of the reduction sequence s1 → . . . → sn is the multiset consisting of the elements of
IOS(s1 → . . . → sn).

2.4.2 Termination

Definition 2.11. Let t be an expression and P be a finite IO-multiset. We write t⇓(P)
if there is a NO-reduction sequence Q of t, that ends with a WHNF and IOM(Q) = P .
Then we say t terminates for the IO-multiset P .

For a closed term t, we say t has a bot-reduction iff there is a normal order reduction

t
n,∗−→ t′ where t′ is a bot-term. If t has a bot-reduction, we write t⇑.

9

Example 2.12. Let c, d, e ∈ C be constants and ⊥ be a bot-term. Let t ∈ LFUNDIO be
the following expression:

t := (case (IO c) (d → ⊥) (e → e) . . .)

Then the following holds:

• t⇑, since the normal order reduction t
n,IOr,(c,d)−−−−−−→ (letrec {} in ⊥) ends with a

bot-term.

• t
n,IOr,(c,e)−−−−−−→ (letrec {} in e) is a normal order reduction of t that ends with a

WHNF. So, t is not a bot-term.

• Let P = {(c, e)}, then t⇓(P).

2.4.3 Contextual equivalence

Definition 2.13. (Contextual preorder and equivalence) The contextual preorder
≤c on terms s, t is the following binary relation:

s ≤c t iff ∀C[·] :
(
(∀P : C[s]⇓(P) =⇒ C[t]⇓(P)) ∧ (C[t]⇑ =⇒ C[s]⇑)

)
The contextual equivalence ∼c on terms s, t is the binary relation with

s ∼c t iff s ≤c t ∧ t ≤c s

A precongruence is a preorder � on terms, with s � t =⇒ C[s] � C[t] for all
contexts C. A congruence is a precongruence which is also an equivalence relation.
[SS03, Proposition 6.7] shows: ≤c is a precongruence and ∼c is a congruence.

2.5 Program transformations

Definition 2.14. (Correct program transformation) A program transformation
is a binary relation on expressions. A program transformation T is correct if for all
expressions s1, s2 ∈ LFUNDIO holds: s1 T s2 =⇒ s1 ∼c s2.

In [SS03, Theorem 16.1 and Proposition 16.2] has been proven that all deterministic
reduction rules (namely (lbeta), (lapp), (llet), (lcase), (IOlet), (cp), (case)) are correct
program transformations and that the rules (IOr-c), (IOr-in) and (IOr-e) are not correct
program transformations if |C| ≥ 2.

Figure 4 defines further program transformations, which have been proven to be cor-
rect in [SS03], where we use the following unions: We denote the union of (gc-1) and
(gc-2) with (gc), the union of (cpx-in) and (cpx-e) with (cpx), the union of (cpcx-in)
and (cpcx-e) with (cpcx) and finally we denote the union of (ucp-1) and (ucp-2) with
(ucp).

10

Garbage Collection

(gc-1) (letrec x1 = s1, . . . , xn = sn, Env in t) −→ (letrec Env in t)
if for all i : xi does not occur in Env nor in t.

(gc-2) (letrec {} in t) −→ t

Copying variables

(cpx-in) (letrec x = y, Env in C[x]) −→ (letrec x = y, Env in C[y])
where y is a variable and x 6= y.

(cpx-e) (letrec x = y, z = C[x], Env in t)
−→ (letrec x = y, z = C[y], Env in t)
where y is a variable and x 6= y.

Copying constructors

(cpcx-in) (letrec x1 = c t1 . . . tm, Env in C[x])
−→ (letrec x1 = c y1 . . . ym,

y1 = t1, . . . , ym = tm, Env in C[c y1 . . . ym])

(cpcx-e) (letrec x1 = c t1 . . . tm, z = C[x], Env in t)
−→ (letrec x1 = c y1 . . . ym,

y1 = t1, . . . , ym = tm, z = C[c y1 . . . ym], Env in t)

Lambda lifting

(llift) C[s[z]] −→ C[(λx. s[x]) z] , where z is a Variable

Copying unique expressions

(ucp-1) (letrec x = s,Env in S[x]) −→ (letrec Env in S[s])
if x occurs exactly once in Env, S[x] and does not occur in s.

(ucp-2) (letrec x = s,Env, y = S[x] in t)
−→ (letrec Env, y = S[s] in t)
if x occurs exactly once in Env, S[x], t and does not occur in s.

Other transformations

(xch) (letrec x = t, y = x, Env in r) −→ (letrec y = t, x = y, Env in r)

(betavar) C[(λx. s) y] −→ C[s[y/x]] , if y is a variable.

Figure 4: Further program transformations of [SS03]

11

The next lemma presents another result of [SS03] about bot-terms, which we will use
in later sections.

Lemma 2.15. Let ⊥ ∈ LFUNDIO be a bot-term. Then for all reduction contexts R:
R[⊥] ∼c ⊥.

Proof. See [SS03, Corollary 20.18].

2.6 Transformations on case expressions

Definition 2.16. Figure 5 defines some new program transformations, which all operate
on case expressions.

With rule (capp) applications to case expressions can be shifted inside the alter-
natives. The (ccpcx) rule allows to copy patterns into a right hand side of a case

alternative if the scrutinee is a variable. The rule (lcshift) shifts outer bindings into
case alternatives, where the expression must have a special form. The rule is necessary
for proving the (ccase-in) rule. The (ccase) rule can be applied to nested case expres-
sions and commutes the order of the case expressions. The (ccase-in) rule is a special
variant of the (ccase) rule. The (crpl) rule allows to replace a right hand side of a case

alternative if the alternative is not reachable by reduction. In [Sab03b] we have shown
that all of these case transformations are correct program transformations. For the
proofs of (capp), (ccpcx), (ccase) and (crpl) we used the technique of complete sets of
commuting and forking diagrams together with the so-called context lemma of [SS03]2.
The remaining transformations can be shown to be correct by transforming their left
hand sides into their right hand sides, by using only correct program transformations

2.7 Transformations for copying expressions

In [SS03] some transformations for copying specific expressions into specific contexts have
already been defined and proven to be correct. Variables ((cpx) rule), constants ((cpcx)
rule) and abstractions ((cp) rule) can be copied into arbitrary contexts. Furthermore,
the rule (ucp) has been shown to be correct, hence it is allowed to copy expressions if they
occur once and not in a body of an abstraction. Below we define further transformations,
which allow (restricted) copying.

Definition 2.17. (Lcheap) Let Lcheap ⊂ LFUNDIO be the language defined by the following
grammar:

Ec ::= V variable
| (λV.s) where s ∈ LFUNDIO

| (ci Ec,1 . . .Ec,n) where ar(ci) = n
| (λx1 . . . xn.(ci x1 . . . xn)) Ec,1 . . . Ec,m where ar(ci) = n + m

2The technique and the context lemma are described in detail in [SS03] and [Sab03b].

12

(capp) ((case s (p1 → t1) . . . (pN → tN)) t)
−→ (case s (p1 → (t1 t)) . . . (pN → (tN t)))

(ccpcx) (case x (p1 → t1) . . . ((ci y1 . . . yar(ci)) → C[x]) . . . (pN → tN))
−→ (case x

(p1 → t1) . . .

((ci y1 . . . yar(ci)) → C[(ci y1 . . . yar(ci))]) . . .

(pN → tN))
where x is a variable and 1 ≤ i < N .

(lcshift) (letrec y = s,Env in R−[(case y (p1 → t1) . . . (pN → tN))])
−→ (letrec Env in R−[(case s

(p1 → (letrec y = p1 in t1))
. . .

(pN → (letrec y = pN in tN)))])
if y does not occur free in s, Env and R−.

(ccase) (case (case s (p1 → t1) . . . (pN → tN)) Alts)
−→ (case s (p1 → (case t1 Alts)) . . . (pN → (case tN Alts)))

(ccase-in) (letrec y = (case s (p1 → t1) . . . (pN → tN)) in (case y Alts))
−→ (case s

(p1 → (letrec y = t1 in (case y Alts)))
. . .

(pN → (letrec y = tN in (case y Alts))))
if y does not occur free in (case s (p1 → t1) . . . (pN → tN)).

(crpl) (case s (p1 → t1) . . . ((ci y1 . . . yar(ci)) → ti) . . . (pN → tN))
−→ (case s (p1 → t1) . . . ((ci y1 . . . yar(ci)) → q) . . . (pN → tN))
can be applied in a context C if this context does not bind
the free variables of s, so that s in C could be reduced to a
constructor application (ci a1 . . . an). There 1 ≤ i < N and q
is a arbitrary closed expression.

Figure 5: case transformations

13

Definition 2.18. Figure 6 defines the rules (cpcheap-in), (cpcheap-e), (brcp-in), (brcp-
e), (ucpb-in) and (ucpb-e). The union of (cpcheap-in) and (cpcheap-e) is denoted with
(cpcheap), the union of (brcp-in) and (brcp-e) with (brcp) and the union of (ucpb-in)
and (ucpb-e) with (ucpb).

The rule (cpcheap) combines some (cp), (cpx) and (cpcx) reductions, so that expres-
sions that are built only by variables, abstractions or constructor applications (with
arguments of Lcheap) can be copied in one step. The last expression in the definition
of Lcheap is necessary to simulate unsaturated constructor applications (which are not
allowed in LFUNDIO). The rule (brcp) allows to float outer letrec bindings into alter-
natives of case expressions and the rule is used for the proof of the (ucpb) rule, which is
an extension of the (ucp) rule: expressions can be copied into a case alternative (if the
occurrence is not in a body of an abstraction), also if the variable occurs more then once
in other alternatives. In [Sab03b] we have shown that all of the copying transformations
are correct. The correctness of the (cpcheap) rule can be proven by induction, where
the base cases are correct, because of the (cpx), (cpcx) and (cp) rules. The (brcp) rule
has been proven to be correct by using the technique of complete sets of commuting
and forking diagrams. The (ucpb) rule can be shown to be correct by transforming
the left hand side into the right hand side of the rule by using only correct program
transformations, especially the (brcp) rule.

2.8 Strictness optimisation

In the following definition we introduce strict abstractions.

Definition 2.19. (Strict abstraction) An abstraction s is strict if (s ⊥) ∼c ⊥, where
⊥ is a bot-term.

Definition 2.20. The rule (streval) is defined as follows

(streval) ((λy.s) t)
−→ (letrec w = t in

(case w (pat1 → ((λy.s) w)) . . . (patN → ((λy.s) w))))
if (λy.s) is a strict abstraction

We yet do not have a proof of correctness for the (streval) transformation, but we
conjecture that the transformation is correct.

2.9 Results

The following theorem summarizes that all introduced rules — except of the (streval)
rule — are correct program transformations.

Theorem 2.21. The rules (capp), (ccpcx), (lcshift), (ccase), (ccase-in), (crpl),
(cpcheap), (brcp) und (ucpb) are correct program transformations.

14

(cpcheap-in) (letrec x = t, Env in C[x]) −→ (letrec x = t, Env in C[t])

where t ∈ Lcheap

(cpcheap-e) (letrec x = t, y = C[x], Env in s)
−→ (letrec x = t, y = C[t], Env in s)

where t ∈ Lcheap

(brcp-in) (letrec y = s, Env in R−[(case t (pat1 → t1) . . . (patN → tN))])
−→ (letrec Env in

R−[(case t (pat1 → (letrec y = s in t1))
. . .

(patN → (letrec y = s in tN)))])

if y does not occur free in R−, Env, s and t

(brcp-e) (letrec
y = s, x = R−[(case t (pat1 → t1) . . . (patN → tN))], Env

in t′)
−→ (letrec

x = R−[(case t (pat1 → (letrec y = s in t1))
. . .

(patN → (letrec y = s in tN)))],
Env

in t′)

if y does not occur free in R−, Env, s, t′ and t.

(ucpb-in) (letrec x = s,Env in S1[(case t . . . (pati → S2[x]) . . .)])
−→ (letrec x = s,Env in S1[(case t . . . (pati → S2[s]) . . .)])
if x does not occur free in Env, S1, S2, t and s.

(ucpb-e) (letrec x = s,Env, y = S1[(case t . . . (pati → S2[x]) . . .)] in t1)
−→ (letrec x = s,Env, y = S1[(case t . . . (pati → S2[s]) . . .)] in t1)
if x does not occur free in Env, S1, S2, t, t1 and s.

Figure 6: Transformations for copying expressions

15

Proof. See [Sab03b, Theorem 3.75].

In the next section we will investigate a lot of program transformations, which are
performed in the GHC. We have proven them to be correct by using the results of this
section.

3 The relation between FUNDIO and Haskell

3.1 Our representation of the core language of the GHC

Definition 3.1. (LGHCCore) The language LGHCCore is defined in figure 7. We will also
call this language GHC core language. Bold symbols are nonterminals, whose definition
is given, italic symbols are other nonterminals; all other symbols are terminals. A valid
expression (program) can be derived starting with nonterminal Expr (Prog).

Prog ::= Binding1; . . . ; Bindingn n ≥ 1

Binding ::= Bind
| rec Bind1; . . . ; Bindn

Bind ::= Var = Expr

Expr ::= Expr Expr (application)
| λ Var1 . . .Varn -> Expr (abstraction)
| case Expr of Alts (case expression)
| let Binding in Expr (local definition)
| Var (variable)
| Con (constructor)
| Literal (unboxed object)
| Prim (primitive operator)

Literal ::= Int | Char | . . .

Alts ::= Calt1; . . . ; Caltn; [Default] n ≥ 0
| Lalt1; . . . ; Laltn; [Default] n ≥ 0

Calt ::= Con Var1 . . .Varn -> Expr n ≥ 0

Lalt ::= Literal -> Expr

Default ::= Var -> Expr

Figure 7: LGHCCore – The GHC core language

Additionally to the presented grammar the following conditions must hold:

16

• A valid program has a top-level binding with left hand side main.

• Constructor applications or applications to primitive operators need not be satu-
rated, but the number of arguments must not be greater then the arity and inside
patterns only saturated constructor applications are allowed.

• The case alternatives are exhaustive insofar as for every constructor to which the
scrutinee can be reduced a pattern is given.

• There is no case expression with alternatives for constructors from different
types, except for a case expression, whose alternatives consist only of a default-
alternative.

We use the following conventions for the representation of terms on the GHC core
language: Parenthesis are used to avoid ambiguities. The application is left-associative
and binds stronger then every other operator. The body of an abstraction reaches as
far as possible. We use arithmetic operators infix. If the meaning is clear, we omit
semicolons between bindings and alternatives. We use the notation f a1 . . . an = e for
functions, where the meaning is always f = λ a1 . . . an -> e. We say an expression is
atomic if the expression is a literal or a variable.

The representation of LGHCCore is similar to [San95] and [PS94], but it has been
adjusted to the actual core language of GHC, which has been derived from [Apt] and
[PM02, page 400] and of course from the source code of the GHC3. We point out some
differences between our representation of LGHCCore and the real core language, which is
used in the compiler:

• The language inside the GHC is explicitly typed (by further language constructs).
We ignore types whenever possible. Inside the syntax we have no types, but
we assume that the set of constructors of LGHCCore is partitioned, where every
partition relates to a type. For example, the constructors True and False build a
partition of the former type Bool.

• In the GHC case expressions have a different representation of the following form:

case Expr of Var Alts

The additional variable V ar is called the “case-binder”, where the semantics is,
that after evaluating the scrutinee the result is bound to V ar. Accordingly, in
reality the default-alternative does not introduce a fresh variable, it is represented
as DEFAULT -> Expr, where DEFAULT is a constant, which can only occur as a
pattern.

• The language inside the GHC has an additional construct Note Expr to mark
expressions with some additional information.

3The core language is defined in the module ghc/compiler/coreSyn/CoreSyn.lhs. We refer to
modules of the GHC with the whole directory path corresponding to the directory structure of the
source distribution of GHC 5.04.3.

17

3.2 Translating the GHC core language to FUNDIO

3.2.1 The translation

We introduce the translation J·K, which translates (untyped) expressions of LGHCCore to
LFUNDIO.

Definition 3.2. (Translation J·K) Let e ∈ LGHCCore. Then JeK ∈ LFUNDIO is the
translated expression. Figure 8 presents most of the translation rules. We divide the
steps of translating an expression with the symbol ≡.

The translation of an expression is done top-down step by step based on the term
structure of the expression. The translation is meaningful, because the constructs like
case, letrec, abstractions and applications are translated in the same constructs in
LFUNDIO whenever this is possible. We regard some special cases: In LGHCCore alter-
natives of case expressions do not have patterns for every constructor, but in LFUNDIO

this is necessary. Therefore, we add enough alternatives while translating where the
right hand sides are all bot-terms. case expressions, which have a default alternative
cannot be translated directly, because LFUNDIO has no default construct. Therefore, we
translate those expressions into case expressions with a single alternative for every con-
structor which is matched by the default alternative. Additionally we add a surrounding
letrec construct, to share the evaluated value, as the default alternative does. FUNDIO
does not provide something like unboxed values. But these primitive values are only a
finite set of values. So we translate every of those values as a constant (the constants
are added to the set of constructors C of the FUNDIO calculus).

Translation rules for primitive operators are missing, because every of those operators
needs a more or less special treatment. We present the translation of those operators
informally by translating some examples. Primitive operators without side-effects are
translated into functions which test all possible combinations of inputs (this is a finite
set) and return the corresponding constant. So these functions are strict in all of their
arguments, where the strictness is generated by using additionally case expressions.
For example, the primitive addition (+#) over two values of type Int# is translated as
follows:

J+#K ≡ (λa1.(λa2.(case a1 (J-2147483648#K → case a2 . . .)
(J-2147483647#K → case a2 . . .)
. . .

(J1#K → case a2 . . . (J1#K → J2#K)(J2#K → J3#K) . . .)
. . .

(J2147483647#K → case a2 . . .)
(pn → ⊥) . . . (pN → ⊥))))

Operators with side-effects are translated by using the IO construct of the FUNDIO
calculus. We assume that getChar and putChar are primitive operators, and translate
them as follows:

18

program: Jbinding1; . . . ;main = t; . . . ; bindingnK
≡ (letrec Jbinding1K, . . . ,main = JtK, . . . , JbindingnK in main)

Jbinding1; . . . ; rec {bindi,1; . . . ;main = t; . . . ; bindi,ni
}; . . . ; bindingnK

≡ (letrec Jbinding1K , . . . ,
Jbindi,1K, . . . ,main = JtK, . . . , Jbindi,niK,
. . . , JbindingnK

in main)

bindings: Jx = tK ≡ x = JtK

Jrec {x1 = t1; . . . ;xn = tn}K ≡ x1 = Jt1K, . . . , xn = JtnK

application: Jt aK ≡ (JtK JaK)

abstraction: Jλvar1 . . . varn-> tK ≡ (λvar1. (. . . (λvarn. JtK) . . .))

let: Jlet v = s in tK ≡ (letrec v = JsK in JtK)

letrec: Jletrec v1 = s1; . . . ; vn = sn in tK
≡ (letrec v1 = Js1K, . . . , vn = JsnK in JtK)

constructor: JcK ≡ (λx1.(λx2. . . . (λxar(c).(c x1 . . . xar(c))) . . .))

variable: JxK ≡ x, if x is variable.

literal: Junboxed valueK ≡ ci,
where for every unboxed value a special constant ci exists.

pattern: Jc a1 . . . aar(c)K ≡ (c a1 . . . aar(c)), if c a1 . . . aar(c) is a pattern.

case without a default alternative:
Jcase t of pat1 -> t1; . . . patn -> tn; K
≡ (case JtK (Jpat1K → Jt1K) . . . (JpatnK → JtnK) (patn+1 → ⊥) . . . (patN → ⊥))
where ⊥ is a bot-term, patn+1, . . . patN are patterns for the constructors of C which
are not covered through the given patterns, i.e. if pati covers the constructor ci,
then pati = ci a1 . . . aar(ci), for i = n + 1, . . . , N − 1 and patN = lambda.

case with alternatives including a default alternative:
Jcase t of pat1 -> t1; . . . ; patn -> tn;x -> sK
≡ (letrec y = JtK in (case y (Jpat1K → Jt1K) . . . (JpatnK → JtnK)

(Jpatn+1K → Js[y/x]K)) . . . (JpatmK → Js[y/x]K))
(patm+1 → ⊥) . . . (patN → ⊥))

if pati, i = 1, . . . , n are patterns of a type with m ≥ n constructors. patn+1, . . . patm
are the missing patterns for constructors of this type. patm+1, . . . patN cover the
remaining constructors in LFUNDIO. y is a fresh variable.

case only with a default alternative:
Jcase t of x -> sK
≡ (letrec y = JtK in (case y (pat1 → Js[y/x]K) . . . (patN → Js[y/x]K)))
where y is a fresh variable.

Figure 8: Translation from LGHCCore to LFUNDIO

19

JgetCharK ≡ (JIOK (λw.(case (IO B) (p1 → (w, p1)) . . . (pn → (w, pn))
(pn+1 → ⊥) . . . (pN → ⊥))))

JputCharK ≡ (λx.(JIOK (λw.(case x

(p1 → (case (IO x) (p1 → (w, J()K)) . . . (pN → (w, J()K))))
. . .

(pn → (case (IO x) (p1 → (w, J()K)) . . . (pN → (w, J()K))))
(pn+1 → ⊥) . . . (pN → ⊥)))))

where p1, . . . , pn, are patterns for constructors of the charset, which is a subset of C,
pn+1, . . . pN are patterns for the remaining constructors of C, B is a special “blank sym-
bol” of C, and JIOK (J()K) is the translation of the constructor IO (()) of the GHC core
language.

The translation of getChar can be derived as follows: Because getChar is an IO-action,
the returned expression is a – boxed by the IO constructor – function which receives
a state of the world and returns a pair consisting of the new state and a character.
The case construct ensures, that the IO expression is evaluated before the new state is
returned and that only characters are accepted as result.

3.2.2 Examples

We present, how the function unsafePerformIO is translated into FUNDIO and il-
lustrate the coherence between unsafePerformIO and the nondeterministic IO of the
FUNDIO calculus.

A slightly simplified definition of unsafePerformIO in Haskell is:

unsafePerformIO (IO m) = case m realWorld# of (s, r) -> r

This expression can be presented in LGHCCore in the following way:

unsafePerformIO = λi -> case i of

(IO m) -> case m realWorld# of

(s, r) -> r

Example 3.3. By translating and simplifying by program transformations we have
shown in [Sab03b]:

JunsafePerformIO getCharK
∼c (case (IO B) (p1 → p1) . . . (pn → pn) (pn+1 → ⊥) . . . (pN → ⊥))

Here p1, . . . , pn are patterns for the elements of the charset. The translation is similar to
the nondeterministic IO construct of FUNDIO, where the additionally case expression
arises from the fact, that getChar returns only characters and no other constants.

20

Example 3.4. Also in [Sab03b] we have shown:

Jλc -> unsafePerformIO (putChar c)K
∼c (λc.(case c (p1 → (case (IO c) (p1 → (J()K)) . . . (pN → (J()K))))

. . .

(pn → (case (IO c) (p1 → (J()K)) . . . (pN → (J()K))))
(pn+1 → ⊥) . . . (pN → ⊥)))

The expression is similar to (λc.(IO c)), where the additional case expressions ensure
that only characters are printed, as well as that the input-value is ignored and the trans-
lation of () is always returned.

The translation J·K transforms constructors with positive arity into abstractions.
Accordingly, constructor applications are translated into applications to abstractions.
We now show, that saturated constructor applications can be translated directly into
LFUNDIO.

Example 3.5. Let c a1 . . . an ∈ LGHCCore be a saturated constructor application, then the
translated expression in LFUNDIO is contextually equivalent to the constructor application
(JcK Ja1K . . . JanK):

Jc a1 . . . anK
≡ (. . . ((λx1.(. . . (λxn.(JcK x1 . . . xn)) . . .)) Ja1K) . . . JanK)

lbeta−−−→ (letrec x1 = Ja1K in (. . . ((λx2.(. . . (λxn.(JcK x1 . . . xn)) . . .)) Ja2K) . . . JanK))
(lll)∗−−−→ (letrec x1 = Ja1K, . . . xn = JanK in (JcK x1 . . . xn))

(ucp)∗−−−−→ (letrec {} in (JcK Ja1K . . . JanK))
gc−→ (JcK Ja1K . . . JanK)

3.2.3 Correctness of program transformations on the GHC core language

We define the correctness of a program transformation in LGHCCore by firstly translating
the transformation into LFUNDIO and secondly using the contextual equivalence of the
FUNDIO calculus.

Definition 3.6. (J·K-correctness) Let P be a program transformation on expressions
s, t ∈ LGHCCore. We say P is J·K-correct if the following holds: s P t =⇒ JsK ∼c JtK

With regard to that correctness we will investigate a lot of program transformations,
which are performed by the GHC.

3.3 Classification of the transformations on GHC core

We divide the transformations on the GHC core language as in [PS94, San95, PS98]
into two classes: The first class consists of local transformations which transform small

21

subexpressions. The power of these transformations arises from performing them to-
gether and more then once iteratively. The local transformations are performed by the
so-called “simplifier”. The global transformations like strictness analysis or “common
subexpression elimination” form the second class of transformations. Nearly each of
these transformations is implemented as one compiler pass and can be turned on or off
separately. After performing such a compiler pass the simplifier is called to clean up the
code. Therefore, it is important that only correct local transformations are performed,
so we will analyse them in detail in the next section. The global transformations are
not treated in detail, but in Section 3.5 we give a brief summary of them with some
comments.

3.4 Local transformations

In this section we investigate the local transformations, which are performed in the GHC.
The presented transformations and their effects are described in detail in [PS94, San95],
but the underlying core language in this papers differs from the one currently in use
and from LGHCCore. Therefore, we have adapted the transformations to the current
implementation. We denote a transformation with the name rule, which transforms
expressions of form l into expressions of form r as

l
(rule)
===> r.

In [Sab03b] we have analyzed every of the presented transformations, where we have
shown the J·K-correctness of a transformation by transforming JlK into JrK by using
the correct program transformations of [SS03] and Theorem 2.21. In this paper we do
not present the proofs again. Instead, we present our results and sketch some of the
proofs. If a transformation is not correct, we will give counter-examples. Analogously
to “contexts” for the FUNDIO calculus we use contexts in LGHCCore without giving an
explicit definition here.

3.4.1 Variants of beta reduction

Atomic beta-reduction

(λx -> e) arg
(β-atom)
===> e[arg/x], if arg is atomic.

Beta with sharing

(λx -> e) arg
(β)
===> let x = arg in e

Figure 9: Variants of beta-reduction

22

Figure 9 shows two variants of beta reduction. (β-atom) is ordinary beta reduction
for atomic arguments, (β) is a variant of beta reduction, which shares the argument.
(β-atom) and (β) are J·K-correct program transformations. The proofs are easy, because
(β) is similar to the (lbeta) rule of FUNDIO and the J·K-correctness of (β-atom) can be
proven by using the (beta-var) rule if the argument is a variable. If the argument is a
literal, the translation of the argument is a constant. Then the J·K-correctness can be
shown, by using the rules (lbeta), (cpcx) and (gc).

3.4.2 Transformations on let(rec)-expressions

Figure 10 shows some transformations on let(rec) expressions. Floating let out of
let and floating let out of a case scrutinee are J·K-correct, where the proofs are trivial
because of the similar (llet) and (lcase) rules of FUNDIO. By using the (gc) rule of the
FUNDIO calculus the dead code removal transformations, which are used to eliminate
unused bindings, can be proven to be J·K-correct. The transformation for general inlining
is not J·K-correct, which is shown by the following counter-example.

Example 3.7. Let s ∈ LGHCCore be the following expression:

s := let x = (unsafePerformIO getChar) in case x of ’d’ -> (case x of ’d’ -> ’d’)

We can obtain the following expression t by one application of the (inl) transformation.

t := let x = (unsafePerformIO getChar) in

case (unsafePerformIO getChar) of ’d’ -> (case x of ’d’ -> ’d’)

Let P = {(B, ’d’)}, then JsK⇓(P), but ¬(JtK⇓(P)), i.e. JsK 6∼c JtK.

Figure 10 shows some special forms of inlining, which were developed after browsing
the source code of GHC. Unique inlining is similar to the (ucp) rule of the FUNDIO
calculus and hence (uinl) can be shown to be J·K-correct by using this rule. Similar to
the (ucpb-in) rule of FUNDIO we have defined the (bruinl) transformation. By using
the (ucpb) rule, we have shown in [Sab03b], that (bruinl) is a J·K-correct program trans-
formation. For understanding cheap inlining we firstly define the language CHEAP .

Definition 3.8. (CHEAP) Let CHEAP be the following set of expressions of
LGHCCore:

x ∈ CHEAP iff.

• x is a literal,
• x is a variable,
• x is an abstraction,
• x is a primitive operator with arity > 0, or
• x is a constructor application ci a1 . . . an, n ≤ ar(ci)

and aj ∈ CHEAP for j = 1, . . . , n

23

Floating let out of let

Rule for let:

let x = (let(rec) Bind in B1)
in B2

(flool-let)
===>

let(rec) Bind
in (let x = B1 in B2)

Rule for letrec:

letrec x = (let(rec) Bind in B1)
in B2

(flool-letrec)
===>

letrec Bind;x = B1

in B2

Floating let out of a case scrutinee

case (let(rec) Bind in E) of Alts
(flooacs)
===>

let(rec) Bind
in case E of Alts

Dead code removal

Rule for let:

let x = E in B
(dcr-let)
===> B, if x has no free occurrence in B.

Rule for letrec:

rec bindings in B
(dcr-letrec)
===> B, if none of the bindings is used in B

Inlining

let(rec) x = e in C[x]
(inl)
===> let(rec) x = e in C[e]

Unique inlining

let(rec) x = e in C[x]
(uinl)
===> C[e]

if x occurs free exactly once in C[x], but not in a body of an abstraction,
and x does not occur free in e.

Branch unique inlining

let(rec) x = e in
C[case e1 of

P1 -> B1

. . .
Pi -> C ′[x]
. . .
Pn -> Bn]

(bruinl)
===>

let(rec) x = e in
C[case e1 of

P1 -> B1

. . .
Pi -> C ′[e]
. . .
Pn -> Bn]

if x occurs only in B1, . . . , Bn and occurs free exactly once in C ′[x],
where the occurrence in C[C ′[x]] is not in a body of an abstraction.

Cheap inlining

let(rec) x = e in C[x]
(cheapinl)
===> let(rec) x = e in C[e], if e ∈ CHEAP .

Figure 10: Transformations on let(rec) expressions

24

The definition of CHEAP was inspired from GHC’s “cheap” expressions4, but in the
GHC more expressions are allowed to be “cheap”, so our set is smaller than that used
in the GHC. Note that the following holds: s ∈ CHEAP =⇒ JsK ∈ Lcheap. (cheapinl)
is J·K-correct which can be proven by using the (cheapcp) rule of FUNDIO.

3.4.3 Transformations on case-expressions

The transformations on case-expressions are defined in the figures 11 and 12.

The case of known constructor transformation described in [San95, PS94] does no
sharing, but the current implementation5 and also the defined (cokc) rule respects shar-
ing. In [Sab03b] we have shown, that (cokc) is J·K-correct. Analogous variants, where
the constructor application is bound to a variable and the arguments are atomic are
defined as (cokc-l) and (cokc-c). The J·K-correctness of (cokc-l) can easily be shown,
because the constructor application with atomic arguments can be copied in FUNDIO
with the (cpcheap) rule. After that the proof of the (cokc) can be used. The (cokc-c)
is J·K-correct, because by using the (ccpcx) rule of FUNDIO the constructor application
(c x1 . . . xn) can be copied into the alternative and then the proof of the (cokc) transfor-
mation can be used for the inner case expression. Finally the arisen letrec expression
can be eliminated by doing some (cpcheap) and a (dcr-letrec) transformation.

The (cokc-default) transformation is a variant of the case, that no pattern of an
alternative matches, but a default alternative is given. In [Sab03b] we have shown, that
(cokc-default) is a J·K-correct program transformation.

By using the (cpx) rule of FUNDIO, we have shown that default binding elimination
is J·K-correct.

Dead alternative elimination is used to eliminate unreachable case alternatives. In
[Sab03b] we have shown, that (dae) is a J·K-correct program transformation, by using
the (crpl) rule of FUNDIO.

The function error has the semantic value ⊥. So, the translation of this function is a
bot-term. By using Lemma 2.15 it is easy to show that the case of error -transformation
is J·K-correct.

Floating case out of case has been shown to be J·K-correct in [Sab03b] by using the
(ccase) and (ccase-in) rule of FUNDIO. The (fcooc) transformation increases the size of
the code (the m alternatives exist n times after performing the transformation). In the
GHC this transformation is performed in another way by using so-called “join points”,
i.e. the right hand sides of the alternatives are shared as follows: Let Qi = ci yi,1 . . . yi,ni

for i = 1, . . . ,m, then the right hand side of the transformation has the form:

4In the module ghc/compiler/coreSyn/CoreUtils.lhs the predicate exprIsCheap is defined.
5In module ghc/compiler/simplCore/Simplify.lhs the function knownCon is defined.

25

Case of known constructor

General rule:

case (c a1 . . . an) of
. . .
c b1 . . . bn -> e
. . .

(cokc)
===>

letrec b1 = a1; . . . ; bn = an

in e

Rule for a let-bound scrutinee:

let(rec) x = c a1 . . . an in
case x of

c b1 . . . bn -> e
. . .

(cokc-l)
===>

let(rec) x = c a1 . . . an

in letrec b1 = a1, . . . , bn = an

in e

Rule for a case-bound scrutinee

case x of
c x1 . . . xn -> case x of

c y1 . . . yn -> e
. . .

. . .

(cokc-c)
===>

case x of
c x1 . . . xn -> e[xi/yi]ni=1

. . .

Case of known constructor with a matching default alternative

case (c a1 . . . an) of
. . .
y -> E

(cokc-default)
===>

let y = (c a1 . . . an)
in E

,

if only the default alternative matches.

Default binding elimination

case v1 of v2 -> e
(dbe)
===> case v1 of v2 -> e[v1/v2], where v1 and v2 are variables.

Dead alternative elimination

case x of
(c1 a1,1 . . . a1,ar(c1)) -> E1;
. . . ;
(ck ak,1 . . . ak,ar(ck)) -> Ek;
. . . ;
(cn an,1 . . . an,ar(cn)) -> En;

(dae)
===>

case x of
(c1 a1,1 . . . a1,ar(c1)) -> E1;
. . . ;
(ck−1 ak−1,1 . . . ak−1,ar(ck−1)) -> Ek−1;
(ck+1 ak+1,1 . . . ak+1,ar(ck+1)) -> Ek+1;
. . . ;
(cn an,1 . . . an,ar(cn)) -> En;

,

if x is not of constructor ck.

Case of error

case (error E) of Alts
(coe)
===> error E

Figure 11: Transformations on case expressions

26

Floating case out of case

case

case E of

P1 -> R1

. . . ;
Pn -> Rn

 of

Q1 -> S1

. . .
Qm -> Sm

(fcooc)
===>

case E of
P1 -> case R1 of

Q1 -> S1

. . .
Qm -> Sm

. . .
Pn -> case Rn of

Q1 -> S1

. . .
Qm -> Sm

Case merging

case x of
c1 a1,1 . . . a1,ar(c1) -> t1
. . .
ck ak,1 . . . ak,ar(ck) -> tk
y ->
case x of
ck+1 bk,1 . . . bk,ar(ck+1) -> tk+1

. . .
cm bm,1 . . . bm,ar(cm) -> tm

(cm)
===>

case x of
c1 a1,1 . . . a1,ar(c1) -> t1
ck ak,1 . . . ak,ar(ck) -> tk
ck+1 bk+1,1 . . . bk+1,ar(ck+1) -> tk+1[x/y]
cm bm,1 . . . bm,ar(cm) -> tm[x/y]

where x is a variable.

Alternative merging

case e of
c1 a1,1 . . . a1,m1 -> E1;
. . .
ci ai,1 . . . ai,mi

-> E;
. . .
cj aj,1 . . . aj,mj

-> E;
cj+1 aj+1,1 . . . aj+1,mj+1 -> Ej+1;
. . .
cn an,1 . . . an,mn -> En

(am)
===>

case e of
c1 a1,1 . . . a1,m1 -> E1;
. . .
ci−1 ai−1,1 . . . ai−1,mi−1 -> Ei−1;
cj+1 aj+1,1 . . . aj+1,mj+1 -> Ej+1;
. . .
cn an,1 . . . an,mn

-> En;
y -> E

if for k = i, . . . , j: ak,1 . . . ak,mk
do not occur free in E.

Case identity

case e of {P1 -> P1; . . . ;Pn -> Pn}
(ci)
===> e

Case elimination

case e of y -> E
(ce)
===> let y = e in E, if e 6= ⊥.

Figure 12: Transformations on case expressions (contd.)

27

letrec s1 = λy1,1 . . . y1,n1 -> S1

. . .
sm = λym,1 . . . ym,nm -> Sm

in
case E of

P1 -> case R1 of
c1 y1,1 . . . y1,n1 -> s1 y1,1 . . . y1,n1

. . .
cm ym,1 . . . ym,nm -> sm ym,1 . . . ym,nm

. . .
Pn -> case Rn of

c1 y1,1 . . . y1,n1 -> s1 y1,1 . . . y1,n1

. . .
cm ym,1 . . . ym,nm -> sm ym,1 . . . ym,nm

The use of join points is J·K-correct, because the si can be copied into the right hand
sides of the alternatives, using the (bruinl) transformation. After that the bindings can
be eliminated with (dcr-letrec). Finally in every alternative the (β-atom) transformation
can be applied. The resulting expression corresponds to the right expression of the
(fcooc) transformation.

Case merging “merges” the alternatives of nested case expressions. In [Sab03b] we
have shown that (cm) is a J·K-correct program transformation.

In module ghc/compiler/simplCore/SimplUtils.lhs of the GHC alternative merg-
ing is performed by the function mkAlts, which unions case alternatives with identical
right hand sides. Note that the case-alternatives on the left hand side of the rule need
not contain a single alternative for every constructor, but the case-expression must be
exhaustive as mentioned in Definition 3.1. Therefore, we have shown in [Sab03b] the
J·K-correctness of (am) by using the (crpl) rule of FUNDIO.

The case identity transformation is performed in the module
ghc/compiler/simplCore/SimplUtils.lhs by the function mkCase1. In [Sab03b] we
have shown, that (ci) is J·K-correct, if the (streval) rule (defined in Definition 2.20) is a
correct program transformation. Presumably, the J·K-correctness can be shown, without
using the (streval) rule, by defining a similar rule for the FUNDIO-calculus and using
the technique of complete sets of commuting and forking diagrams.

Case elimination is defined as used in the GHC6. Our definition differs from
[PS94, San95], because we respect sharing. (ce) in general is not a J·K-correct program
transformation, which is shown by the following counter-example:

Example 3.9. Let s and t be the following expressions with s
(ce)
===> t, where c is a

6It is performed by the function mkCase in the module ghc/compiler/simplCore/SimplUtils.lhs.

28

constant:

s = case (unsafePerformIO getChar) of y -> c

t = let y = (unsafePerformIO getChar) in c

Let P = ∅, then ¬(JsK⇓(P)), but JtK⇓(P), i.e. JsK 6∼c JtK

In [Sab03b] we have shown, that (ce) is J·K-correct, if e is an abstraction, a primitive
operator (with positive arity), a literal or a (perhaps unsaturated) constructor applica-
tion.

3.4.4 Transformations on let(rec)- and case-expressions

Figure 13 defines some transformations which all have a variant of let(rec) expressions
and a variant of case expressions. The let-rule of floating applications inwards can be

Floating applications inwards

Rule for let:

(let(rec) Bind in E) arg
(fai-let)
===> let(rec) Bind in (E arg)

Rule for case:
case E of

P1 → E1;
. . .
Pn → En

 arg
(fai-case)
===>

case E of
P1 → E1 arg;
. . .
Pn → En arg

Constructor reuse

Rule for let:

let x = c a1 . . . an

in C[c a1 . . . an]
(cr-let)
===>

let x = c a1 . . . an

in C[x] , if the ai are atomic.

Rule for case:

case x of
. . .
c a1 . . . an -> C[c a1 . . . an]
. . .

(cr-case)
===>

case x of
. . .
c a1 . . . an -> C[x]
. . .

, where x is variable.

Figure 13: Transformations on let(rec) and case expressions

shown to be J·K-correct by using the (lapp) rule of the FUNDIO calculus. The J·K-
correctness of (fai-case) can be shown by using the (capp) rule of FUNDIO.

The rules for constructor reuse differ from those defined in [PS94, San95], because we
added to the let-rule the condition, that the arguments of the constructor application

29

are atomic. In [PS94, San95] this was not necessary, because of their core language. The
condition holds also in the current implementation, because GHC allows only such let-
bound constructor applications. This is mentioned in [PM02, page 399] and documented
in the source code of the module ghc/compiler/coreSyn/CoreSyn.lhs. A constructor
application with non-atomic arguments can be transformed into the demanded form by
using the (uinl) transformation several times. For the FUNDIO calculus this procedure
is described with the similar (ucp) rule in [SS03]. In [Sab03b] we have shown that
(cr-case) and (cr-let) are J·K-correct.

3.4.5 Strictness-based transformations

The transformations shown in figure 14 need strictness information.

Let to case

let v = E1 in E2

(ltc)
===> case E1 of v -> E2

if v has a constructor type, E2 is strict in v and E1 is not a WHNF.

Unboxing let to case

let v = E1 in E2

(ultc)
===>

case E1 of
c a1 . . . an -> let v = c a1 . . . an in E2

if v has constructor type, which consists only of exactly one constructor c

and E2 is strict in v.

Floating case out of let

let v = case E1 of
c1 a1,1 . . . a1,m1 -> t1;
. . .
cn an,1 . . . an,mn

-> tn
in E3

(fcool)
===>

case E1 of
c1 a1,1 . . . a1,m1 -> let v = t1 in E3;
. . .
cn an,1 . . . an,mn -> let v = tn in E3

if E3 is strict in v and v is not free in E1.

Figure 14: Strictness-based transformations

The let to case transformation uses strictness information to evaluate a let bound
expression earlier, by transforming the expression into a case expression. The unboxing
let to case transformation is a variant of the transformation above, for special construc-
tors, especially for unboxing a boxed literal. The floating case out of let7 transformation
floats out a case expression of a let if the value is demanded. In [Sab03b] we have
shown that (ltc), (ultc) and (fcool) are J·K-correct if the (streval) rule of FUNDIO is a
correct program transformation and strictness is defined as in Definition 2.19.

7[San95] calls the transformation “case floating from let right hand side”

30

3.4.6 Eta-expansion and -reduction

In figure 15 some rules for eta-expansion and eta-reduction are shown. In the transfor-

Eta-expansion

General rule:

v = λx1 . . . xn ->
f x1 . . . xn

(η-exp)
===>

v = λx1 . . . xn . . . xm ->
f x1 . . . xn . . . xm

if f has arity m and n < m.

Restricted rule:

f
(eeta-exp)
===> λx1 . . . xn -> (f x1 . . . xn), if arη(f) = n

Eta case expansion:

case e of
p1 -> e1

. . .
pn -> en

(η-exp-case)
===>

λy -> case e of
p1 -> e1 y
. . .
pn -> en y

if the following conditions hold
• e is a variable, and
• all right hand sides of the alternatives are functions, and
• all right hand sides of the alternatives are WHNFs.

Eta-reduction

let(rec)
f = g1; g1 = g2; . . . gk = u; . . .

in λx1 . . . xn -> (f x1 . . . xn)

(η-red)
===>

let(rec)
f = g1; g1 = g2; . . . gk = u; . . .

in f

if one of the following conditions holds
(1) u = λy1 . . . ym -> e

(2) u = primop and ar(primop) = m

(3) u = ci a1 . . . am′ and ar(ci) = (m + m′)
and m ≥ n

Figure 15: Eta-expansion and -reduction

mation (η-exp) the underlying concept of arity differs from the usual. [PS94] and [San95]
give an imprecise definition, by saying the used arity is the “maximum number of lamb-
das” of the expression, where the number of arguments is meant which can be passed
to the expression, without doing “work”, like evaluating a case or letrec expression.
The following counter-example shows, that (η-exp) is not J·K-correct.

31

Example 3.10. Let s and t be the following terms with s
(η-exp)
===> t,

s = let fun = (λx1 x2 -> x1) (unsafePerformIO getChar)
in case (fun False) of {’a’ -> ’a’; ’b’ -> (fun False)}

t = let fun = λy -> ((λx1 x2 -> x1) (unsafePerformIO getChar) y)
in case (fun False) of {’a’ -> ’a’; ’b’ -> (fun False)}

JsK 6∼c JtK: Let P = {(B, ’b’)}, then JsK⇓(P), but ¬(JtK⇓(P)), since t requires two
IO-pairs to terminate.

For understanding the (eeta-exp) transformation we define the mapping arη, which is
similar to the function exprArity used in the GHC.

Definition 3.11. arη : LGHCCore → N0 is defined as follows:

arη(x) =

m, if x is a primitive operator with arity m
m, if x a constructor with arity m
1 + arη(s) if x = λy.s
max{0, arη(a)− 1}, if x = (a b) and b ∈ CHEAP
0, otherwise

In [Sab03b] we have shown, that (eeta-exp) is J·K-correct. A variant of η-expansion
for case expressions is (η-exp-case), but (η-exp-case) is not J·K-correct:
Example 3.12. Let s, t ∈ LGHCCore, where c is a constant:

s :=letrec z = (unsafePerformIO getChar); f = λx -> case z of {u -> (λw -> w)}
in case (f True) of {v -> ’a’}

t :=letrec z = (unsafePerformIO getChar); f = λx -> (λy -> case z of {u -> (λw -> w) y}
in case (f True) of {v -> ’a’}

s can be transformed into t by applying the (η-case) transformation. Let P = ∅, then
JtK⇓(P) and ¬(JsK⇓(P)), hence JsK 6∼ JtK.

The eta-reduction is defined as used in the GHC. In [Sab03b] we have shown that
(η-red) is a J·K-correct program transformation.

3.4.7 Results

In the following theorem we remind the reader, which of the local transformations are
J·K-correct:

Theorem 3.13. The transformations (β-atom), (β), (flool-let), (flool-letrec), (flooacs),
(dcr-let), (dcr-letrec), (uinl), (bruinl), (cheapinl), (cokc), (cokc-default), (dbe), (dae),
(coe), (fcooc), (cm), (am), (fai-let), (fai-case), (cr-case), (cr-let), (η-red), (eeta-exp)
are J·K-correct.

32

The transformations (ci),(ltc),(ultc), (fcool) are J·K-correct if (streval) is a correct
program transformation.

Proof. See [Sab03b, Theorem 4.42].

Therefore, these transformation can be used in the GHC for compiling programs which
use unsafePerformIO in arbitrary contexts.

Some transformation have been shown to be not J·K-correct:

Theorem 3.14. The transformations (inl), (ce), (η-exp), (η-exp-case) are not J·K-
correct.

Proof. See [Sab03b, Theorem 4.43].

These transformations have to be turned off or modified in the GHC.

[San95, Section 3.7.1] defines the transformation constant folding which allows to
evaluate runtime-independent expressions. Constant folding seems to be J·K-correct,
because the translated expressions can be transformed to the same expression, only by
using deterministic rules of the FUNDIO calculus, which have been proven to be correct
program transformations.

3.5 Global transformations

Now we give a brief overview of the global transformations, which are performed in
the GHC. We yet have not investigated them in detail. In the following, at first we
present a transformation, which is obviously J·K-correct. After that, we present three
transformations, that are not J·K-correct. Finally we give an overview of the rest of the
global transformations.

3.5.1 Correct transformations

Let floating in

This transformation8 moves let bindings into expressions, but no binding outside an
abstraction is moved into the body of the abstraction.

Because of the J·K-correctness of the (flool-let)-, (flool-letrec)-, (flooacs)- and (fai-let)-
transformations, let(rec) bindings can be floated into other let(rec) bindings, into
the scrutinee of a case expression and into an application. So it is only remaining to
prove, that let(rec) bindings can be floated into the case alternatives. But this proof
is easy, because we can use the (brcp) rule of the FUNDIO calculus.

8See [PPS96, Section 3.1], [San95, Section 5.1] and [PS98, Section 7.1].

33

3.5.2 Incorrect transformations

Full laziness

In contrast to let floating in, the full laziness9-transformation moves bindings out of
expressions. Because the bindings are also floated out of the body of an abstraction, the
transformation is not J·K-correct as the following counter-example shows:

Example 3.15. Let s and t be the following expressions, where t differs only from
s insofar as the binding z = unsafePerformIO getChar has been floated out of the
abstraction.

s = let f = λx -> let z = unsafePerformIO getChar in z

in case f ’a’ of y -> f ’b’

t = let f = let z = unsafePerformIO getChar in λx -> z

in case f ’a’ of y -> f ’b’

While evaluating JsK, the right hand side of f is copied for every call to f , because the
right hand side is an abstraction. So, JsK needs two IO-pairs to terminate. In contrast,
during the evaluation of JtK a (llet) reduction adjusts the environment insofar as the
binding for z is shared for every call to f . So, JtK needs only one IO-pair to terminate.
Hence, let P = {(B, ’c’)} then JtK⇓(P) and ¬(JsK⇓(P)), i.e. JsK 6∼c JtK.

Common subexpression elimination

Common subexpression elimination (CSE)10 replaces identical subexpressions by a vari-
able, and the subexpression is shared with a let binding.

The effect of the transformation can be reversed by using inlining and the (dcr) trans-
formation. Because inlining is not J·K-correct, the same holds for CSE, which is also
shown by the following counter-example:

Example 3.16. Let s and t be the following terms, where t can be derived from s by
performing CSE:

s = case unsafePerformIO getChar of

y -> case unsafePerformIO getChar of

y′ -> ’a’

t = let x = unsafePerformIO getChar in

case x of

y -> case x of

y′ -> ’a’

Let P = {(B, ’a’)}, then JtK⇓(P), but ¬(JsK⇓(P)).

9See. [PPS96, section 3.2], [San95, section 5.2] and [PS98, section 7.2].
10See [Chi98]

34

Static argument transformation

This transformation [San95, Section 7.1] is no longer performed in the GHC. Similar
to the investigations in [PPRS00] and [PS00] for a parallel functional programming
language, it is easy to show, that the static argument transformation is not J·K-correct:
Example 3.17. Let s and t be the following terms:

s = let f = λa b -> case unsafePerformIO getChar of

’d’ -> 0
y -> f a b

in f 0 1

t = let f = λa b -> let f ′ = case unsafePerformIO getChar of

’d’ -> 0
y -> f ′

in f ′

in f 0 1

s can be transformed into t by the static argument transformation, because the arguments
a and b are static, i.e. they are not changed in the definition of f and they are used at the
same position in the recursive call. However, the IO-multiset P = {(B, ’d’), (B, ’e’)}
distinguishes JsK and JtK.

3.5.3 Not yet investigated transformations

Demand analysis

The demand analysis is performed to obtain – beside others – strictness information
(see [PP93]). Furthermore, the constructed product result analysis (see [BGP]) is im-
plemented as a part of the demand analysis. Based on the obtained information the
worker/wrapper transformation (see [PS98]) can be performed, which is implemented as
a separate compiler pass.

UsageSP analysis

Based on [WP99] a type system is used, to additionally obtain information about, how
often and in which context free variables occur. The advantage is that copying into
a body of an abstraction is possible if it is known that this abstraction is evaluated
only once, or the opposite that no copying takes place, because the abstraction is never
evaluated. We yet have not investigated an according variant of the (ucp) rule, so we
cannot give a statement about the J·K-correctness of this transformation.

Deforestation

This transformation is based on [Wad90] and used to eliminate intermediate list-like
structures. An example is the expression sum (map double) [1..n] which is trans-
formed to an expression, that does not use lists. More details about the implementation
in the GHC can be found in [Gil96].

35

Specialising

The transformation described in [Jon94] generates for overloaded operators like (+),
special functions for every type, to avoid introducing so-called “dictionary” parameters
(see [WB89]) while resolving the overloading. Another separate compiler pass is spe-
cialising over constructors. In [PS00] specialising is mentioned as problematic. These
results cannot be applied easily to our semantics, as illustrated in [Sab03b].

3.5.4 Results

The most important result about our investigation of the global transformations is,
that the full-laziness-transformation and the common subexpression elimination are not
J·K-correct. They should not be performed in a FUNDIO-compatible compiler. Let-
floating-in can be performed as in the GHC, because it is J·K-correct. The remaining
global transformations are not yet investigated and should not be performed as long as
they have not been proven to be correct.

4 Conclusions

We showed how to apply the calculus FUNDIO to Haskell. After representing the
calculus we defined a contextual equivalence which is used to define the notion of a
correct program transformation. By introducing some new transformations we enlarged
the set of correct program transformations of [SS03]. This set enabled us to investigate
a lot of program transformations which are performed in the Glasgow Haskell Compiler.
We defined the J·K-correctness of program transformations on the GHC core language by
introducing a translation, which translates expressions from the GHC core language to
FUNDIO, and then using the correct program transformation for FUNDIO. The result is
that most of the local transformations are correct in the FUNDIO sense. By turning off
the few transformations that are not correct and not yet investigated transformations we
achieved the prototype HasFuse – a FUNDIO-compatible modification of GHC. HasFuse
allows to use unsafePerformIO in arbitrary contexts within Haskell programs. The
behavior of these programs is no longer unpredictable, because the FUNDIO semantics
gives us some predictions when and how many IO-actions will take place. From that
point of view the use of unsafePerformIO with HasFuse is ’safe’.

5 Further work

To produce more efficient code further program transformations have to be investigated.
A proof of the correctness of the (streval) transformation is necessary to complete the
proofs of the J·K-correctness of the strictness-based transformations (ltc), (ultc) and
(flcool). To perform these transformations also an investigation of the strictness analysis
is necessary, we assume that a safe variant of this analysis can be developed by using an
analysis based on abstract reduction as in [SSPS95, Sch00].

36

Another aim is to develop (and implement) correct variants of those program transfor-
mations, which have been shown to be FUNDIO-incompatible. For example the results
of [Kut00] about “deterministic subexpressions” could be used to develop safe variants
of inlining and common subexpression elimination.

On the other hand the now possible use of unsafePerformIO in arbitrary contexts
should be investigated. It is possible that a declarative programming style for the IO
part of a program can be integrated into Haskell.

6 Acknowledgements

I would like to thank the members of the “Glasgow Haskell Users Mailing List” and the
developers of the Glasgow Haskell compiler for the useful answers to my questions about
the GHC.

My special gratitude goes to Matthias Mann and Prof. Dr. Manfred Schmidt-Schauß
for their constructive comments and their helpful suggestions.

References

[AFM+95] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and
Philip Wadler. A call-by-need lambda calculus. In Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 233–246. ACM Press, 1995.

[Apt] Andrew Tolmach Apt. An external representation for the ghc core language
(draft for ghc5.02). http://haskell.cs.yale.edu/ghc/docs/papers/.

[BGP] Clem Baker-Finch, Kevin Glynn, and Simon Peyton Jones. Constructed
Product Result Analysis for Haskell. To appear in Journal of Functional
Programming.

[Chi98] Olaf Chitil. Common subexpressions are uncommon in lazy functional lan-
guages. In Chris Clack, Kevin Hammond, and Antony J. T. Davie, edi-
tors, Implementation of Functional Languages, 9th International Workshop,
IFL’97, St. Andrews, Scotland, UK, September 10-12, 1997, Selected Papers,
volume 1467 of Lecture Notes in Computer Science, pages 53–71. Springer,
1998.

[Gil96] Andrew Gill. Cheap Deforestation for Non-strict Functional Languages. PhD
thesis, Glasgow University, Department of Computing Science, 1996.

[Jon94] Mark P. Jones. Dictionary-free Overloading by Partial Evaluation. In Partial
Evaluation and Semantics-Based Program Manipulation, Orlando, Florida,

37

http://haskell.cs.yale.edu/ghc/docs/papers/

June 1994 (Technical Report 94/9, Department of Computer Science, Uni-
versity of Melbourne), pages 107–117, 1994.

[Kut00] Arne Kutzner. Ein nichtdeterministischer call-by-need Lambda-Kalkül mit
erratic choice: Operationale Semantik, Programmtransformationen und An-
wendungen. PhD thesis, J.W.Goethe-Universität Frankfurt, 2000.

[PM02] Simon Peyton Jones and Simon Marlow. Secrets of the glasgow haskell com-
piler inliner. Journal of Functional Programming, 12(4&5):393–434, 2002.

[PP93] Simon L. Peyton Jones and W. Partain. Measuring the effectiveness of a
simple strictness analyser. In J. T. O’Donnell, editor, Glasgow Workshop on
Functional Programming 1993. Springer-Verlag, 5–7 July 1993.

[PPRS00] C. Pareja, R. Peña, F. Rubio, and C. Segura. Optimizing Eden by Trans-
formation. In Stephen Gilmore, editor, Trends in Functional Programming
(Volume 2) . Proceedings of 2nd Scottish Functional Programming Work-
shop, SFP’00, volume 2 of Trends in Functional Programming, pages 13–26.
Intellect, 2000.

[PPS96] Simon Peyton Jones, Will Partain, and André Santos. Let-floating: mov-
ing bindings to give faster programs. In Proceedings of the first ACM
SIGPLAN international conference on Functional programming, pages 1–12.
ACM Press, 1996.

[PS94] S. Peyton Jones and A. Santos. Compilation by transformation in the glasgow
haskell compiler. In K. Hammond, D. N. Turner, and P. M. Sansom, edi-
tors, Glasgow Workshop on Functional Programming, pages 184–204, Berlin,
Heidelberg, 1994. Springer.

[PS98] Simon L. Peyton Jones and André L. M. Santos. A transformation-based op-
timiser for Haskell. Science of Computer Programming, 32(1–3):3–47, 1998.

[PS00] R. Peña and C. Segura. Two non-determinism analyses in eden. Technical
Report 108-00, 2000.

[Sab03a] David Sabel. A Guide Through HasFuse. Institut für Informatik, J.
W. Goethe-Univeristät, Frankfurt, 2003. http://www.ki.informatik.uni-
frankfurt.de/∼sabel/hasfuse.

[Sab03b] David Sabel. Realisierung der Ein-/Ausgabe in einem Compiler für Haskell
bei Verwendung einer nichtdeterministischen Semantik. Diplomarbeit, Insti-
tut für Informatik, J.W.Goethe-Universität Frankfurt, 2003.

[San95] André Santos. Compilation by Transformation in Non-Strict Functional Lan-
guages. PhD thesis, Glasgow University, Department of Computing Science,
1995.

38

http://www.ki.informatik.uni-frankfurt.de/~sabel/hasfuse
http://www.ki.informatik.uni-frankfurt.de/~sabel/hasfuse

[Sch00] Marko Schütz. Analysing demand in nonstrict functional programming lan-
guages. Dissertation, J.W.Goethe-Universität Frankfurt, 2000.

[SS03] Manfred Schmidt-Schauß. FUNDIO: A lambda-calculus with a letrec,
case, constructors, and an IO-interface: Approaching a theory of
unsafePerformIO. Frank report 16, Institut für Informatik, J.W. Goethe-
Universität Frankfurt am Main, 2003.

[SSPS95] Manfred Schmidt-Schauß, Sven Eric Panitz, and Marko Schütz. Strictness
analysis by abstract reduction using a tableau calculus. In Proc. of the Static
Analysis Symposium, number 983 in Lecture Notes in Computer Science,
pages 348–365. Springer-Verlag, 1995.

[The03] The GHC Team. The Glasgow Haskell Compiler User’s Guide, Version 5.04,
2003. http://haskell.cs.yale.edu/ghc/docs/5.04.3/.

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theo-
retical Computer Science, 73(2):231–248, 1990.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 60–76. ACM Press, 1989.

[WP99] Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic
type. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 15–28. ACM Press, 1999.

39

http://haskell.cs.yale.edu/ghc/docs/5.04.3/

	Introduction
	Overview

	The FUNDIO calculus
	Syntax
	Contexts
	Reduction rules
	Contextual equivalence
	IO-multisets and IO-sequences
	Termination
	Contextual equivalence

	Program transformations
	Transformations on case expressions
	Transformations for copying expressions
	Strictness optimisation
	Results

	The relation between FUNDIO and Haskell
	Our representation of the core language of the GHC
	Translating the GHC core language to FUNDIO
	The translation
	Examples
	Correctness of program transformations on the GHC core language

	Classification of the transformations on GHC core
	Local transformations
	Variants of beta reduction
	Transformations on let(rec)-expressions
	Transformations on case-expressions
	Transformations on let(rec)- and case-expressions
	Strictness-based transformations
	Eta-expansion and -reduction
	Results

	Global transformations
	Correct transformations
	Incorrect transformations
	Not yet investigated transformations
	Results

	Conclusions
	Further work
	Acknowledgements
	References

