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Abstract. A sound and complete algorithm for nominal unification of higher-order expressions with a
recursive let is described, and shown to run in non-deterministic polynomial time. We also explore spe-
cializations like nominal letrec-matching for expressions, for DAGs, and for garbage-free expressions and
determine their complexity. As extension a nominal unification algorithm for higher-order expressions
with recursive let and atom-variables is constructed, where we show that it also runs in non-deterministic
polynomial time.

This paper is an extended version of the conference publication [36].

1 Introduction

Unification [9] is an operation to make two logical expressions equal by finding substitutions into
variables. There are numerous applications in computer science, in particular of (efficient) first-order
unification, for example in automated reasoning, type checking and verification. Unification algorithms
are also extended to higher-order calculi with various equivalence relations. If equality includes α-
conversion and β-reduction and perhaps also η-conversion of a (typed or untyped) lambda-calculus,
then unification procedures are known (see, e.g., [21]), however, the problem is undecidable [20, 24].

Our motivation comes from syntactical reasoning on higher-order expressions, with equality being
alpha-equivalence of expressions, and where a unification algorithm is demanded as a basic service.
Nominal unification is the extension of first-order unification with abstractions. It unifies expressions
w.r.t. alpha-equivalence, and employs permutations as a clean treatment of renamings. It is known that
nominal unification is decidable [46, 47], where the complexity of the decision problem is polynomial
time [13]. It can be seen also from a higher-order perspective [26], as equivalent to Miller’s higher-order
pattern unification [31]. There are efficient algorithms [13, 25], formalizations of nominal unification [8],
formalizations with extensions to commutation properties within expressions [4], and generalizations
of nominal unification to narrowing [6]. Equivariant (nominal) unification [16, 14, 1] extends nominal
unification by permutation-variables, but it can also be seen as a generalization of nominal unification
by permitting abstract names for variables.

We are interested in unification w.r.t. an additional extension with cyclic let. To the best of our
knowledge, there is no nominal unification algorithm for higher-order expressions permitting general
binding structures like a cyclic let.
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The motivation and intended application scenario is as follows: constructing syntactic reasoning
algorithms for showing properties of program transformations on higher-order expressions in call-by-
need functional languages (see for example [32, 42]) that have a letrec-construct (also called cyclic let)
[3] as in Haskell [29], (see e.g. [15] for a discussion on reasoning with more general name binders, and
[45] for a formalization of general binders in Isabelle). There may be applications also to coinductive
extensions of logic programming [44] and strict functional languages [22]. Basically, overlaps of ex-
pressions have to be computed (a variant of critical pairs) and reduction steps (under some strategy)
have to be performed. To this end, first an expressive higher-order language is required to represent
the meta-notation of expressions. For example, the meta-notation ((λx.e1) e2) for a beta-reduction is
made operational by using unification variables X1, X2 for e1, e2. The scoping of X1 and X2 is differ-
ent, which can be dealt with by nominal techniques. In fact, a more powerful unification algorithm is
required for meta-terms employing recursive letrec-environments.

Our main algorithm LetrecUnify is derived from first-order unification and nominal unifica-
tion: From first-order unification we borrowed the decomposition rules, and the sharing method from
Martelli-Montanari-style unification algorithms [30]. The adaptations of decomposition for abstrac-
tions and the advantageous use of permutations of atoms is derived from nominal unification algo-
rithms. Decomposing letrec-expression requires an extension by a permutation of the bindings in the
environment, where, however, one has to take care of scoping. Since in contrast to the basic nom-
inal unification, there are nontrivial fixpoints of permutations (see Example 3.2), novel techniques
are required and lead to a surprisingly moderate complexity: a fixed-point shifting rule (FPS) and a
redundancy removing rule (ElimFP). These rules bound the number of fixpoint equations X

.
= π·X

(where π is a permutation) using techniques and results from computations in permutation groups.
The application of these techniques is indispensable (see Example 4.6) for obtaining efficiency.

Inspired by the applications in programming languages, we investigated the notion of garbage-free
expressions. The restriction to garbage-free expressions permits several optimizations of the unification
algorithms. The first is that testing α-equivalence is polynomial. Another advantage is that due to
the unique correspondence of positions for two α-equal garbage-free expressions, we show that in this
case, fixpoint equations can be replaced by freshness constraints (Corollary 9.4).

As a further extension, we studied the possibility to formulate input problems using atom variables
as in [41, 40] in order to take advantage of the potential of less non-determinism. The corresponding
algorithm LetrecUnifyAV requires nested permutations and generalized freshness constraints as
further expressibility, and also other techniques such as explicit compression of permutations. The
algorithm runs in NP time. We added a strategy to really exploit the extended expressivity and the
omission of certain nondeterministic choices.

Related Work: We have already mentioned some related work about nominal unification and its ex-
tensions. In one of them, nominal commutative unification [5], one can observe that there are nontrivial
fixpoints of permutations. This is similar to what we have in nominal unification with recursive let
(when garbage-freeness is not required), which is not surprising, because, essentially, this phenomenon
is related to the lack of the ordering: in one case among the arguments of a commutative function
symbol, in the other case among the bindings of recursive let. Consequently, nominal C-unification
reduces to fixpoint constraints. Those constraints may have infinitely many incomparable solutions
expressed in terms of substitutions and freshness constraints (which is the standard way to repre-
sent nominal unifiers). In [7], the authors proposed to use fixpoint constraints as a primitive notion
(instead of freshness constraints) to axiomatize α-equivalence and, hence, use them in the represen-
tation of unifiers, which helped to finitely represent solutions of nominal C-unification problems. The
technical report [37] contains explanations how to obtain a nominal C-unification algorithm from a
letrec unification algorithm and transfers the NP-completeness result for letrec unification to nominal
commutative unification.

The ρg-calculus [11] integrates term rewriting and lambda calculus, where cyclic, shared terms
are permitted. Such term-graphs are represented as recursion constraints, which resemble to recursive
let environments. The evaluation mechanism of ρg-calculus is based on matching for such shared
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structures. Matching and recursion equations are incorporated in the object level and rules for their
evaluation are presented.

Unification of higher-order expressions with recursive let (but without nominal features) has been
studied in the context of proving correctness of program transformations in call-by-need λ-calculi [35,
34]. Later, in [39], the authors proposed a more elaborated approach to address semantic properties
of program calculi, which involves unification of meta-expressions of higher-order lambda calculi with
letrec environments. This unification problem extends those from [35, 34]: environments are treated as
multisets, different kinds of variables are considered (for letrec environments, contexts, and binding
chains), more than one environment variable is permitted, and non-linear unification problems are
allowed. Equivalence there is syntactic, in contrast to our nominal approach where equality modulo
α is considered. Unlike [39], our unification problems do not involve context and chain variables, but
we do have environment variables in matching problems. Moreover, we permit atom variables in an
extension of nominal letrec unification.

Results: The nominal letrec unification algorithm is complete and runs in nondeterministic poly-
nomial time (Theorem 5.1, 5.3). The nominal letrec matching is NP-complete (Theorems 6.2, 7.1),
as well as the nominal unification problem (Theorems 5.3, 7.1). Nominal letrec matching for dags is
in NP and outputs substitutions only (Theorem 6.4), and a very restricted nominal letrec matching
problem is graph-isomorphism hard (Theorem 7.3). Nominal matching including letrec-environment
variables is in NP (Theorem 8.6). Nominal unification for garbage-free expressions can be done with
simple fixpoint rules (Corollary 9.4). In the extension with atom variables, nominal unification can
be done using practically useful strategies with less non-determinism and is NP-complete (Theorem
10.13).

2 Some Intuitions

In first order unification we have a language of applications of function symbols over a (possible
empty) list of arguments (fe1 . . . en), where n is the arity of f , and variables X. Solutions of
equations between terms are substitutions for variables that make both sides of equations syntacti-
cally equal. First order unification may be solved using the following two problem transformation rules:

(Decomposition)
Γ ·∪{(f e1 . . . en)

.
= (f e′1 . . . e

′
n)}

Γ ∪ {e1
.
= e′1 . . . en

.
= e′n}

(Instantiation)
Γ ·∪{X .

= e}
[X 7→ e]Γ

If X does not occur in e.

The substitution solving the original set of equation may be easily recovered from the sequence of
transformations. However, the algorithm resulting from these rules is exponential in the worst case.

Martelli and Montanari [30] described a set of improved rules that result into a O(n log(n)) time
algorithm.1 In a first phase the problem is flattened,2 resulting into equations where every term is a
variable or of the form (f X1 . . . Xn). The second phase is a transformation using the following rules:

(Decomposition)
Γ ·∪{(f X1 . . . Xn)

.
= (f Y1 . . . Yn)}

Γ ∪ {X1
.
= Y1, . . . , Xn

.
= Yn}

(Variable
Instantiation)

Γ ·∪{X .
= Y }

[X 7→ Y ]Γ

(Elimination)
Γ ·∪{X .

= e}
Γ

If X does not occur in e or Γ

(Merge)
Γ ·∪{X .

= (f X1 . . . Xn), X
.
= (f Y1 . . . Yn)}

Γ ∪ {X .
= (f X1 . . . Xn), X1

.
= Y1, . . . , Xn

.
= Yn}

1 The original Martelli and Montanari’s algorithm is a bit different. In fact, they do not flatten equations. However, the
essence of the algorithm is basically the same as the one described here.

2 In the flattening process we replace every proper subterm (fe1 . . . en) by a fresh variable X, and add the equation
X

.
= (fe1 . . . en). We repeat this operation (at most a linear number of times) until all proper subterms are variable

occurrences.
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Notice that in these rules the terms involved in the equations are not modified (they are not
instantiated), except by the replacement of a variable by another in the Variable Instantiation
rule. We can define a measure on problems as the number of distinct variables, plus the number of
equations, plus the sum of the arities of the function symbols occurrences. All rules decrease this
measure (for instance, the merge rule increases the number of equations by n − 1, but removes a
function symbol occurrence of arity n). Since this measure is linear in the size of the problem, this
proves that the maximal number of rule applications is linear. The Merge rule is usually described as

Γ ·∪{X .
= e1, X

.
= e2}

Γ ∪ {X .
= e1, e1

.
= e2}

If e1 and e2 are not variables

However, this rule does not decrease the proposed measure. We can force the algorithm to, if
possible, immediately apply a decomposition of the equation e1

.
= e2. Then, the application of both

rules (resulting into the first proposed Merge rule) do decrease the measure.

2.1 Nominal Unification

Nominal unification is an extension of first-order unification where we have lambda-binders. Vari-
ables of the target language are called atoms, and the unification-variables are simply called variables.
Bound atoms can be renamed. For instance, λa.(f a) is equivalent to λb.(f b). We also have permuta-
tions of atom names (represented as swappings) applied to expressions of the language. When these
permutations are applied to a variable, this is called a suspension. The action of a permutation on a
term is simplified until we get a term where permutations are innermost and only apply to variables.
For instance, (a b)·λa.(f X a (f b c)), where (a b) is a swapping between the atoms a and b, results into
λb.(f (a b)·X b (f a c)). As we will see below, we also need a predicate to denote that an atom a cannot
occur free in a term e, noted a#e.

We can extend the previous first-order unification algorithm to the nominal language modulo
α-equivalence. The decomposition of λ-expressions distinguishes two cases, when the binder name is
the same and when they are distinct and we have to rename one of them:

(Decomposition
lambda 1)

Γ ·∪{λa.s .
= λa.t}

Γ ∪ {s .
= t}

(Decomposition
lambda 2)

Γ ·∪{λa.s .
= λb.t}

Γ ∪ {s .
= (a b)·t, a#t}

As we see in the second rule, we introduce a freshness constraint that has to be checked or solved,
so we need a set of transformations for this kind of equations. This set of freshness constraints are
solved in a second phase of the algorithm.

As we have said, permutations applied to variables cannot be longer simplified and result into
suspensions. Therefore, now, we deal with suspensions instead of variables, and we do not make any
distinction between X and Id·X. Variable instantiation distinguishes two cases:

(Variable
Instantiation)

Γ ·∪{π ·X .
= π′ · Y }

[X 7→ (π−1 ◦ π′) · Y X 6= Y ]Γ
(Fixpoint)

Γ ·∪{π ·X .
= π′ ·X}

Γ ∪ {a#X | a ∈ dom(π−1 ◦ π′)}
Notice that equations between the same variable X

.
= X that are trivially solvable in first-order

unification, adopt now the form π ·X .
= π′ ·X. This kind of equations are called fixpoint equations and

impose a restriction on the possible instantiations of X, when π and π′ are not the identity. Namely,
π · X .

= π′ · X is equivalent to {a#X | a ∈ dom(π−1 ◦ π′)}, where the domain dom(π) is the set of
atoms a such that π(a) 6= a.

From this set of rules we can derive an O(n2 log n) algorithm, similar to the algorithms described
in [13, 25]. This algorithm has three phases. First, it flattens all equations. Second, it applies this set of
problem transformation rules. Using the same measure as in the first-order case (considering lambda
abstraction as a unary function symbol and not counting the number of freshness equations), we can
prove that the length of problem transformation sequences is always linear. In a third phase, we deal
with freshness equations. Notice that the number of distinct non-simplifiable freshness equations a#X
is quadratically bounded.
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2.2 Letrec Expressions

Letrec expressions have the form (letrec a1.e1; . . . ; an.en in e). Variables ai are binders where the
scope is in any of the expressions ej and in e. We can rename these binders, obtaining an equivalent
expression. For instance, (letrec a.(f a) in (g a)) ∼ (letrec b.(f b) in (g b)). Moreover, we can also
swap the order of definitions. For instance, (letrec a.f ; b.g in (h a b)) ∼ (letrec b.g; a.f in (h a b)).
Schmidt-Schauß et al. [38] prove that equivalence of letrec expressions is graph-isomorphism (GI)
complete and Schmidt-Schauß and Sabel [39] prove that unification is NP-complete. The GI-hardness
can be elegantly proved by encoding any graph, like G = (V,E) = ({v1, v2, v3}, {(v1, v2), (v2, v3)}),
into a letrec expression, like (letrec v1.a; v2.a; v3.a in letrec e1.(c v1 v2); e2.(c v2 v3) in a).

Unfortunately, there are nontrivial fixpoints of permutations in the letrec-language. For example,
(letrec a1.b1, a2.b2, a3.a3 in a3) is a fixpoint of the equation X

.
= (b1 b2) ·X, although b1 and b2 are

not fresh in the expression. Therefore, the fixpoint rule of the nominal algorithm in [46] would not
be complete in our setting: to ensure X

.
= (b1 b2) · X we cannot require b1#X and b2#X. See also

Example 3.2. Hence, fixpoint equations can in general not be replaced by freshness constraints. For
the general case we need a complex elimination rule, called fixed point shift:

(FixPointShift)
Γ ·∪{X .

= π1 ·X, . . . ,X
.
= πn ·X,X

.
= e}

Γ ∪ {e .
= π1 · e, . . . , e

.
= πn · e}

If X does not occur in e or Γ .

This rule can generate an exponential number of equations (see Example 4.6). In order to avoid
it, we will use a property on the number of generators of permutation groups (see end of Section 3).

For the decomposition of letrec expressions we also need to introduce a (don’t know) non-
deterministic choice. With this artifact, we can reduce equations between letrec expressions into
equations between lambda expressions:

(Decomposition Letrec)
Γ ·∪{letrec a1.s1; . . . ; an.snin r

.
= letrec b1.t1; . . . ; bn.tnin r

′}
|∀ρ Γ ∪ {λa1 . . . λan.(s1, . . . , sn, r)

.
= λbρ(1) . . . λbρ(n).(tρ(1), . . . , tρ(n), r′)}

In order to decrease the measure, we should immediately apply decomposition of lambda expres-
sions (similarly to the decomposition applied immediately after the Merge rule). In section 4, we will
describe in full detail all the transformation rules of our algorithm.

3 The Ground Language of Expressions

The very first idea of nominal techniques [46] is to use concrete variable names in lambda-calculi (also
in extensions), in order to avoid implicit α-renamings, and instead use operations for explicitly applying
α-renaming. Suppose s = λx.x and t = λy.y are concrete (syntactically different) lambda-expressions.
The nominal technique provides explicit name-changes using permutations. These permutations are
applied irrespective of binders. For example (x y)(λx.λx.a) results in λy.λy.a. Syntactic reasoning
on higher-order expressions, for example unification of higher-order expressions modulo α-equivalence
will be done by nominal techniques on a language with concrete names, where the algorithms require
certain extra constraints and operations. The gain is that all conditions and substitutions etc. can
be computed and thus more reasoning tasks can be automated, whereas the implicit name conditions
under implicit α-equivalence have a tendency to complicate (unification-) algorithms and to hide the
required conditions on equality/disequality/occurrence/non-occurrence of names.

3.1 Preliminaries

We define the language LRL (LetRec Language) of (ground-)expressions, which is a lambda calculus
extended with a recursive let construct. The notation is consistent with [46]. The (infinite) set of atoms
A is a set of (concrete) symbols a, b which we usually denote in a meta-fashion; so we can use symbols
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a, b also with indices (the variables in lambda-calculus). There is a set F of function symbols with
arity ar(·). The syntax of the expressions e of LRL is:

e ::= a | λa.e | (f e1 . . . ear(f)) | (letrec a1.e1; . . . ; an.en in e)

We also use tuples, which are written as (e1, . . . , en), and which are treated as functional expressions
in the language. We assume that binding atoms a1, . . . , an in a letrec-expression (letrec a1.e1; . . . ;
an.en in e) are pairwise distinct. Sequences of bindings a1.e1; . . . ; an.en are abbreviated as env .

The scope of atom a in λa.e is standard: a has scope e. The letrec-construct has a special
scoping rule: in (letrec a1.s1; . . . ; an.sn in r), every free atom ai in some sj or r is bound by the
environment a1.s1; . . . ; an.sn. This defines the notion of free atoms FA(e), bound atoms BA(e) in
expression e, and all atoms AT (e) in e. For an environment env = {a1.e1, . . . , an.en}, we define the
set of letrec-atoms as LA(env) = {a1, . . . , an}. We say a is fresh for e iff a 6∈ FA(e) (also denoted as
a#e). As an example, the expression (letrec a.cons s1 b; b.cons s2 a in a) represents an infinite list
(cons s1 (cons s2 (cons s1 (cons s2 . . .)))), where s1, s2 are expressions. However, since our language
LRL is only a fragment of core calculi [32, 42], the reader may find more programming examples there.

We will use mappings on atoms from A. A swapping (a b) is a function that maps an atom a
to atom b, atom b to a, and is the identity on other atoms. We will also use finite permutations π
on atoms from A, which are represented as a composition of swappings in the algorithms below. Let
dom(π) = {a ∈ A | π(a) 6= a}. Then every finite permutation can be represented by a composition of
at most (|dom(π)|−1) swappings. Composition π1 ◦π2 and inverse π−1 can be immediately computed.
Permutations π operate on expressions simply by recursing on the structure. For a letrec-expression
this is π · (letrec a1.s1; . . . ; an.sn in e) = (letrec π · a1.π · s1; . . . ;π · an.π · sn in π · e). Note that
permutations also change names of bound atoms.

We will use the following definition of α-equivalence:

Definition 3.1. The equivalence ∼ on expressions e ∈ LRL is defined as follows:

– a ∼ a.
– if ei ∼ e′i for all i, then (fe1 . . . en) ∼ (fe′1 . . . e

′
n) for an n-ary f ∈ F .

– If e ∼ e′, then λa.e ∼ λa.e′.
– If a#e′ and e ∼ (a b) · e′, then λa.e ∼ λb.e′.
– If there is some permutation ρ on {1, . . . , n}, such that
λa1. . . . .λan.(e1, . . . , en, e0) ∼ λa′ρ(1). . . . .λa

′
ρ(n).(e

′
ρ(1), . . . , e

′
ρ(n), e

′
0) implies

(letrec a1.e1; . . . ; an.en in e0) ∼ (letrec a′1.e
′
1; . . . ; a

′
n.e
′
n in e′0).

Note that ∼ is identical to the equivalence relation generated by α-equivalence of binding constructs
and permutation of bindings in a letrec. Note also that e1 ∼ e2 is equivalent to π·e1 ∼ π·e2, which will
be implicitly used in the arguments below.

We need fixpoint sets of permutations π: We define Fix (π) = {e | π · e ∼ e}. In usual nominal
unification, these sets can be characterized by using freshness constraints [46]. Clearly, all these sets
and also all finite intersections are nonempty, since at least fresh atoms are elements and since A is
infinite. However, in our setting, these sets are nontrivial:

Example 3.2. The α-equivalence (a b) · (letrec c.a; d.b in True) ∼ (letrec c.a; d.b in True) holds,
which means that there are expressions t in LRL with t ∼ (a b) · t and FA(t) = {a, b}. This is in
contrast to usual nominal unification.

Below we will use the results on complexity of operations in permutation groups, see [28, 17].
We consider a set {a1, . . . , an} of distinct objects (in our case the atoms), the symmetric group
Σ({a1, . . . , an}) (of size n!) of permutations of the objects, and its elements, subsets and subgroups.
Subgroups are always represented by a set of generators (represented as permutations on {a1, . . . , an}).
If H is a set of elements (or generators), then 〈H〉 denotes the generated subgroup. Some facts are:

– A permutation can be represented in space linear in n.
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– Every subgroup of Σ({a1, . . . , an}) can be represented by ≤ n2 generators.

However, elements in a subgroup may not be representable as a product of polynomially many gener-
ators.

The following questions can be answered in polynomial time:

– The element-question: π ∈ G.

– The subgroup question: G1 ⊆ G2.

However, intersection of groups and set-stabilizer (i.e. {π ∈ G | π(M) = M}) are not known to be
computable in polynomial time, since those problems are as hard as graph-isomorphism (see [28]).

4 A Nominal Letrec Unification Algorithm

As an extension of LRL, there is a countably infinite set of (unification) variables X,Y also denoted
perhaps using indices. The syntax of the language LRLX (LetRec Language eXtended) is

e ::= a | X | π ·X | λa.e | (f e1 . . . ear(f)) | (letrec a1.e1; . . . ; an.en in e)

Var is the set of variables and Var(e) is the set of variables X occurring in e.

The expression π·e for a non-variable e means an operation, which is performed by shifting π
down, using the simplification π1·(π2·X) → (π1 ◦ π2)·X, apply it to atoms, where only expressions
π ·X remain, which are called suspensions. A freshness constraint in our unification algorithm is of the
form a#e, where e is an LRLX -expression, and an atomic freshness constraint is of the form a#X.

Definition 4.1 (Simplification of Freshness Constraints).

{a#b} ·∪∇
∇

if a 6= b
{a#(f s1 . . . sn)} ·∪∇
{a#s1, . . . , a#sn} ∪ ∇

{a#(λa.s)} ·∪∇
∇

{a#(λb.s)} ·∪∇
{a#s} ∪ ∇

if a 6= b

{a#(letrec a1.s1; . . . , an.sn in r)} ·∪∇
∇

if a ∈ {a1, . . . , an}

{a#(letrec a1.s1; . . . , an.sn in r)} ·∪∇
{a#s1, . . . a#sn, a#r} ∪ ∇

if a 6∈ {a1, . . . , an}
{a#(π ·X)} ·∪∇
{π−1(a)#X} ∪ ∇

Definition 4.2. An LRLX -unification problem is a pair (Γ,∇), where Γ is a set of equations {s1
.
= t1,

. . . , sn
.
= tn}, and ∇ is a set of freshness constraints {a1#e1, . . . , am#em}.

A (ground) solution of (Γ,∇) is a substitution ρ (mapping variables in Var(Γ,∇) to ground expres-
sions), such that siρ ∼ tiρ, for i = 1, . . . , n, and aj#(ejρ), for j = 1, . . . ,m.

The decision problem is whether there is a solution for a given (Γ,∇).

Definition 4.3. Let (Γ,∇) be an LRLX -unification problem. We consider triples (σ,∇′,X ), where σ
is a substitution (compressed as a dag) mapping variables to LRLX -expressions, ∇′ is a set of freshness
constraints, and X is a set of fixpoint constraints of the form X ∈ Fix (π), where X 6∈ dom(σ).

A triple (σ,∇′,X ) is a unifier of (Γ,∇), if

(i) there exists a ground substitution ρ that solves (∇′σ,X ), i.e., for every a#e in ∇′, a#eσρ is valid,
and for every constraint X ∈ Fix (π) in X , Xρ ∈ Fix (π); and

(ii) for every ground substitution ρ that instantiates all variables in V ar(Γ,∇) which solves (∇′σ,X ),
the ground substitution σρ is a solution of (Γ,∇).

A set M of unifiers is complete, if every solution µ is covered by at least one unifier, i.e. there is some
unifier (σ,∇′,X ) in M , and a ground substitution ρ, such that Xµ ∼ Xσρ for all X ∈ Var(Γ,∇).
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(1)
Γ ·∪{e .

= e}
Γ

(2)
Γ ·∪{π ·X .

= s} s 6∈ Var and π 6= ∅
Γ ∪ {X .

= π−1 · s}

(3)
Γ ·∪{X .

= π·Y },∇, θ Y 6= X

Γ [π·Y/X],∇[π·Y/X], θ ∪ {X 7→ π·Y } (4)
Γ ·∪(f s1 . . . sn)

.
= (f s′1 . . . s

′
n)}

Γ ∪ {s1
.
= s′1, . . . , sn

.
= s′n}

(5)
Γ ·∪{λa.s .

= λa.t}
Γ ∪ {s .

= t}
(6)

Γ ·∪{λa.s .
= λb.t},∇

Γ ∪ {s .
= (a b)·t},∇∪ {a#t}

(7)
Γ ·∪{letrec a1.s1; . . . ; an.sn in r

.
= letrec b1.t1; . . . ; bn.tn in r′},∇∣∣∣∣∣∣

∀ρ

Γ ∪
{

decompose(n+ 1, λa1 . . . λan.(s1, . . . , sn, r)
.
= λbρ(1). . . . λbρ(n).(tρ(1), . . . , tρ(n), r

′))

}
,

∇∪
{

decompfresh(n+ 1, λa1 . . . λan.(s1, . . . , sn, r)
.
= λbρ(1). . . . λbρ(n).(tρ(1), . . . , tρ(n), r

′))

}


where ρ is a permutation on {1, . . . , n} and decompose(n, .) is the equation part of n-fold
application of rules (5) or (6) and decomposefresh(n, .) is the freshness constraint
part of the n-fold application of rules (5) or (6).

Fig. 1. Standard (1,2,3) and decomposition rules (4,5,6,7)

(MMS)
Γ ·∪{X .

= e1, X
.
= e2},∇

Γ ∪ {X .
= e1} ∪ Γ ′,∇∪∇′

,

if e1, e2 are neither variables nor suspensions. where Γ ′

is the set of equations generated by decomposing e1
.
= e2 using

(4)–(7), and where ∇′ is the set of freshness constraints generated
during decomposing e1

.
= e2 using (4)–(7).

(FPS)
Γ ·∪{X .

= π1·X, . . . ,X
.
= πn·X,X

.
= e}, θ

Γ ∪ {e .
= π1·e, . . . , e

.
= πn·e}, θ ∪ {X 7→ e}

,
If X 6∈ Var(Γ, e), and e is neither a variable nor a sus-
pension, and no failure rule (see below) is applicable.

(ElimFP)
Γ ·∪{X .

= π1·X, . . . ,X
.
= πn·X,X

.
= π·X}, θ

Γ ∪ {X .
= π1·X, . . . ,X

.
= πn·X}, θ

, if π ∈ 〈π1, . . . , πn〉.

(Output)
Γ,∇, θ

θ,∇, {“X ∈ Fix (π)” | X .
= π ·X ∈ Γ}

if Γ only consists of fixpoint-equations.

Fig. 2. Main Rules of LetrecUnify

We will employ nondeterministic rule-based algorithms computing unifiers: There is a clearly indi-
cated disjunctive (don’t know non-deterministic) rule, all other rules are don’t care non-deterministic.
The collecting variant of the algorithm runs and collects all solutions from all alternatives of the
disjunctive rule(s). The decision variant guesses one possibility and tries to compute a single unifier.

Since we want to avoid the exponential size explosion of the Robinson-style unification, keeping the
good properties of Martelli Montanari-style algorithms [30], but not their notational overhead, we stick
to a set of equations as data structure. As a preparation for the algorithm, all expressions in equations
are exhaustively flattened as follows: (f t1 . . . tn)→ (f X1 . . . Xn) plus the equations X1

.
= t1, . . . , Xn

.
=

tn. Also λa.s is replaced by λa.X with equation X
.
= s, and (letrec a1.s1; . . . , an.sn in r) is replaced

by (letrec a1.X1; . . . , an.Xn in X) with the additional equations X1
.
= s1; . . . ;Xn

.
= sn;X

.
= r. The

introduced variables are fresh ones. Thus, all expressions in equations are of depth at most 1, not
counting the permutation applications in the suspensions.

4.1 Rules of the Algorithm LetrecUnify

The top symbol of an expression is defined as tops(X) = X, tops(π·X) = X, tops(f s1 . . . sn) = f ,
tops(a) = a, tops(λa.s) = λ, tops(letrec env in s) = letrec. Let Fx := F ∪ A ∪ {letrec, λ}.

Definition 4.4. The rule-based algorithm LetrecUnify is defined in the following. Its rules are in
Figs. 1, 2 and 3. LetrecUnify operates on a tuple (Γ,∇, θ), where Γ is a set of flattened equations
e1

.
= e2, where we assume that

.
= is symmetric, ∇ contains freshness constraints, θ represents the

already computed substitution as a list of replacements of the form X 7→ e. Initially θ is empty.
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Clash Failure: If s
.
= t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) 6= tops(t).

Cycle Detection: If there are equations X1
.
= s1, . . . , Xn

.
= sn where tops(si) ∈ Fx, and Xi+1 occurs in si for

i = 1, . . . , n− 1 and X1 occurs in sn.
Freshness Fail: If there is a freshness constraint a#a.
Freshness Solution Fail: If there is a freshness constraint a#X ∈ ∇, and not a#((X)θ).

Fig. 3. Failure Rules of LetrecUnify

The final state will be reached, i.e. the output, when Γ only contains fixpoint equations of the form
X

.
= π·X that are non-redundant, and the rule (Output) fires.

The rules (1)–(7), and (ElimFP) have highest priority; then (MMS) and (FPS). The rule (Output)
terminates an execution on Γ0 by outputting a unifier (θ,∇′,X ).

We assume that the algorithm LetrecUnify stops if a failure rule is applicable.

We can also apply LetrecUnify to arbitrary input equations by first flattening them, which can
be performed in polynomial time.

Note that the two rules (MMS) and (FPS), without further precaution, may cause an exponential
blow-up in the number of fixpoint-equations (see Example 4.6). The rule (ElimFP) will limit the
number of fixpoint equations by exploiting knowledge on operations on permutation groups.

Note that in any case at least one solution is represented.

The computation of FA((X)θ) can be done in polynomial time by iterating over the solution
components.

In the notation of the rules, we use [e/X] as substitution that replaces X by e. In the rules, we
may omit ∇ or θ if they are not changed. We will use a notation “|” in the consequence part of one
rule, perhaps with a set of possibilities, to denote disjunctive (i.e. don’t know) nondeterminism. The
only nondeterministic rule that requires exploring all alternatives is rule (7). The other rules can be
applied in any order, where it is not necessary to explore alternatives.

Example 4.5. We illustrate the letrec-rule by a ground example without flattening. Let the equa-
tion be: (letrec a.(a, b), b.(a, b) in b)

.
= (letrec b.(b, c), c.(b, c) in c). Select the identity per-

mutation ρ, which results in: λa.λb.((a, b), (a, b), b)
.
= λb.λc.((b, c), (b, c), c). Decomposition yields:

λb.((a, b), (a, b), b)
.
= (a b)·λc.((b, c), (b, c), c) = λc.((a, c), (a, c), c). (The freshness constraint a# . . .

holds). Then decomposing using the λ-rule gives ((a, b), (a, b), b)
.
= (b c)·((a, c), (a, c), c) (the freshness

constraint b# . . . holds). The resulting equation is ((a, b), (a, b), b)
.
= ((a, b), (a, b), b), which is valid.

Example 4.6. This example shows that FPS (together with the standard and decomposition rules) may
give rise to an exponential number of equations in the size of the original problem. Let there be variables
Xi, i = 0, . . . , n and the equations Γ = {Xn

.
= π·Xn, Xn

.
= (f Xn−1 ρn·Xn−1), . . . , X2

.
= (f X1 ρ2·X1)}

where π, ρ1, . . . , ρn are permutations. We prove that this unification problem may give rise to 2n−1

equations, if the redundancy rule (ElimFP) is not there.

The first step is by (FPS):

{
f Xn−1 ρn·Xn−1

.
= π·(f Xn−1 ρn·Xn−1),

Xn−1
.
= (f Xn−2 ρn−1·Xn−2), . . .

}
Using decomposition and inversion:


Xn−1

.
= π·Xn−1,

Xn−1
.
= ρ−1n ·π·ρn·Xn−1,

Xn−1
.
= (f Xn−2 ρn−1·Xn−2), . . .
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After (FPS):


(f Xn−2 ρn−1·Xn−2)

.
= π·(f Xn−2 ρn−1·Xn−2),

(f Xn−2 ρn−1·Xn−2)
.
= ρ−1n ·π·ρn·(f Xn−2 ρn−1·Xn−2),

Xn−2
.
= (f Xn−3 ρn−2·Xn−3), . . .


decomposition and inversion:


Xn−2

.
= π·Xn−2,

Xn−2
.
= ρ−1n−1·π·ρn−1·Xn−2,

Xn−2
.
= ρ−1n ·π·ρn·Xn−2,

Xn−2
.
= ρ−1n−1·ρ−1n ·π·ρn·ρn−1·Xn−2,

Xn−2
.
= (f Xn−3 ρn−2·Xn−3), . . .


Now it is easy to see that all equations X1

.
= π′·X1 are generated, with π′ ∈ {ρ−1πρ where ρ is a

composition of a subsequence of ρn, ρn−1, . . . , ρ2}, which makes 2n−1 equations. The permutations are
pairwise different using an appropriate choice of ρi and π. The starting equations can be constructed
using the decomposition rule of abstractions.

5 Soundness, Completeness, and Complexity of LetrecUnify

Theorem 5.1. The decision variant of the algorithm LetrecUnify runs in nondeterministic poly-
nomial time. Its collecting version returns a complete set of at most exponentially many unifiers, every
one represented in polynomial space. The number of rule applications is O(S3 log(S)) where S is the
size of the input.

Proof. Let Γ0,∇0 be the input, and let S = size(Γ0,∇0). The execution of a single rule can be done
in polynomial time depending on the size of the intermediate state, thus we have to show that the
size of the intermediate states remains polynomial and that the number of rule applications is at most
polynomial.

The number of fixpoint-equations for every variable X is at most S ∗ log(S) since the number
of atoms is never increased, and since we assume that (ElimFP) is applied whenever possible. The
size of the permutation group is at most S!, and so the length of proper subset-chains and hence the
maximal number of generators of a subgroup is at most log(S!) ≤ S∗ log(S). Note that the redundancy
of generators can be tested in polynomial time depending on the number of atoms. Note also that
applicability of (ElimFP) can be tested in polynomial time by checking the maximal possible subsets.

The lexicographically ordered termination measure (#Var,#LrλFA,#Eqs,#EqNonX) is:
#Var is the number of different variables in Γ ,
#LrλFA is the number of letrec-, λ, function-symbols and atoms in Γ , but not in permutations,
#Eqs is the number of equations in Γ , and
#EqNonX is the number of equations where none of the equated expressions is a variable.

Since shifting permutations down and simplification of freshness constraints both terminate and
do not increase the measures, we only compare states which are normal forms for shifting down
permutations and simplifying freshness constraints. The following table shows the effect of the rules:
Let S be the size of the initial (Γ0,∇0) where Γ is already flattened.

The entries +W represents a size increase of at most W in the relevant measure component.

#Var #LrλFA #Eqs #EqNonX

(3) < ≤ < ≤
(FPS) < +2S log(S) < +S log(S)
(MMS) = < +2S =
(4), (5), (6), (7) = < +S ≤
(ElimFP) = = < ≤
(1) ≤ ≤ < ≤
(2) = = = <

The table shows that the rule applications strictly decrease the measure. The entries can be verified
by checking the rules, and using the argument that there are not more than S log(S) fixpoint equations
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for a single variable X. We use the table to argue on the number of rule applications and hence the
complexity: The rules (3) and (FPS) strictly reduce the number of variables in Γ and can be applied
at most S times. (FPS) increases the second measure at most by 2 ∗ S log(S), since the number of
symbols may be increased as often as there are fixpoint-equations and there are at most S log(S).
Because no other rule increases the measure #LrλFA will never be greater than 2S2 log(S). The rule
(MMS) strictly decreases #LrλFA. Hence#Eqs, i.e. the number of equations is bounded by 4S3 log(S).
The same bound holds for #EqNonX. Thus, the number of rule applications is O(S3 log(S)).

Theorem 5.2. The algorithm LetrecUnify is sound and complete.

Proof. Soundness of the algorithm holds, by easy arguments for every rule, similar as in [46], and since
the letrec-rule follows the definition of ∼ in Def. 3.1. A further argument is that the failure rules are
sufficient to detect final states without solutions.

Completeness requires more arguments. The decomposition and standard rules (with the exception
of rule (7)), retain the set of solutions. The same for (MMS), (FPS), and (ElimFP). Note that the
nondeterminism in (ElimFP) does not affect completeness. The nondeterministic rule (7) provides all
possibilities for potential ground solutions. Moreover, the failure rules are not applicable to states that
are solvable.

A final output of LetrecUnify has at least one ground solution as instance: we can instantiate
all variables that remain in Γout by a fresh atom. Then all fixpoint equations are satisfied, since the
permutations cannot change this atom, and since the (atomic) freshness constraints hold. This ground
solution can be represented in polynomial space by using θ, plus an instance X 7→ a for all remaining
variables X and a fresh atom a, and removing all fixpoint equations and freshness constraints.

Theorem 5.3. The nominal letrec-unification problem is in NP.

Proof. This follows from Theorems 5.1 and 5.2.

6 Nominal Matching with Letrec: LetrecMatch

Reductions in higher order calculi with letrec, in particular on a meta-notation, require a matching
algorithm, matching its left hand side to an expression.

Example 6.1. Consider the (lbeta)-rule, which is the version of (beta) used in call-by-need calculi with
sharing [2, 32, 42]. Note that only the sharing power of the recursive environment is used here.

(lbeta) (λx.e1) e2 → letrec x.e2 in e1.

An (lbeta) step, for example, on (λx.x) (λy.y) is performed by switching to the language LRL and
then matching (app (λc.X1) X2) � (app (λa.a) (λb.b)), where app is the explicit representation of the
binary application operator. This results in σ := {X1 7→ c;X2 7→ (λb.b)}, and the reduction result
is the σ-instance of (letrec c.X2 in X1), which is (letrec c.(λb.b) in c). Note that this form of
reduction implicitly uses α-equivalence.

We derive a nominal letrec matching algorithm as a specialization of LetrecUnify. We use non-
symmetric equations written s � t, where s is an LRLX -expression, and t does not contain variables.
Note that neither freshness constraints nor suspensions are necessary (and hence no fixpoint equations)
in the solution. We assume that the input is a set of equations of expressions.

The rules of the algorithm LetrecMatch are:

Γ ·∪{e � e}
Γ

Γ ·∪{(f s1 . . . sn) � (f s′1 . . . s
′
n)}

Γ ∪ {s1 � s′1, . . . , sn � s′n}
Γ ·∪{λa.s � λa.t}
Γ ∪ {s � t}

Γ ·∪{λa.s � λb.t}
Γ ∪ {s � (a b)·t}

if a#t, otherwise Fail.
Γ ·∪{π·X � e}

Γ ∪ {X � π−1·e}
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Γ ·∪{letrec a1.s1; . . . , an.sn in r � letrec b1.t1; . . . , bn.tn in r′}
|
∀ρ

Γ ∪ {λa1. . . . λan.(s1, . . . , sn, r) � λaρ(1). . . . λaρ(n).(tρ(1), . . . , tρ(n), r′)}

where ρ is a (mathematical) permutation on {1, . . . , n}

Γ ·∪{X � e1, X � e2}
Γ ∪ {X � e1}

if e1 ∼ e2, otherwise Fail

The test e1 ∼ e2 will be performed as a subroutine call to this (nondeterministic) matching
procedure in the collecting version, i.e. the test succeeds if there is a nondeterministic execution with
success as result.

Clash Failure: if s
.
= t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) 6= tops(t).

Standard arguments show:

Theorem 6.2. LetrecMatch is sound and complete for nominal letrec matching. It decides nominal
letrec matching in nondeterministic polynomial time. Its collecting version returns a finite complete
set of an at most exponential number of matching substitutions, which are of at most polynomial size.

Theorem 6.3. Nominal letrec matching is NP-complete.

Proof. The problem is in NP, which follows from Theorem 6.2. It is also NP-hard, which follows from
the (independent) Theorem 7.1.

A slightly more general situation for nominal letrec matching occurs, when the matching equations
Γ0 are compressed using a dag. We construct a practically more efficient algorithm LetrecDagMatch
from LetrecUnify as follows. First we generate Γ1 from Γ0, which only contains flattened expressions
by encoding the dag-nodes as variables together with a unification equation. An expression is said Γ0-
ground, if it does not reference variables from Γ0 (also via equations). In order to avoid suspension
(i.e. to have nicer results), the decomposition rule for λ-expressions with different binder names is
modified as follows :

Γ ·∪(λa.s
.
= λb.t},∇

Γ ∪ {s .
= (a b)·t},∇∪ {a#t}

λb.t is Γ0-ground

The extra conditions a#t and Γ0-ground can be tested in polynomial time. The equations Γ1
are processed applying LetrecUnify (with the mentioned modification) with the guidance that the
right-hand sides of match-equations are also right-hand sides of equations in the decomposition rules.
The resulting matching substitutions can be interpreted as the instantiations into the variables of Γ0.
Since Γ0 is a matching problem, the result will be free of fixpoint equations, and there will be no
freshness constraints in the solution. Thus we have:

Theorem 6.4. The collecting variant of LetrecDagMatch outputs an at most exponential set of
dag-compressed substitutions that is complete, where every unifier is represented in polynomial space.

7 Hardness of Nominal Letrec Matching and Unification

Theorem 7.1. Nominal letrec matching (hence also unification) is NP-hard, for two letrec expres-
sions, where subexpressions are free of letrec.

Proof. We encode the NP-hard problem of finding a Hamiltonian cycle in a regular graph [33, 18],
which are graphs where all nodes have the same degree k = 3. Let a1, . . . , an be the vertexes of the
graph, and E be the set of edges. The first environment part is env1 = a1.(node a1); . . . ; an.(node an),
and a second environment part env2 consists of bindings b.(f a a′) and b′.(f a′ a) for every edge
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(a, a′) ∈ E for fresh names b, b′. Then let t := (letrec env1; env2 in 0) representing the graph. Let
the second expression encode the question whether there is a Hamiltonian cycle in a regular graph
as follows: The first part of the environment is env ′1 = a1.(node X1), . . . , an.(node Xn). The second
part is env ′2 consisting of b1.f X1 X2; b2.f X2 X3; . . . ; bn.f Xn X1, where all bi are different atoms,
and the third part env ′3 consists of a number of (dummy) entries of the form b.f Z Z ′, where b is
always a fresh atom for every binding, and Z,Z ′ are fresh variables for every entry. The number of
these dummy entries is k ∗ n− n. Let s := (letrec env ′1; env ′2; env ′3 in 0), representing the question
of the Hamiltonian cycle existence. Then the matching problem s � t is solvable iff the graph has a
Hamiltonian cycle. The degree is 3, hence it is not possible that there shortcuts in the cycle.

Theorem 7.2. The nominal letrec-unification problem is NP-complete.

Proof. This follows from Theorems 5.3 and 7.1.

We say that an expression t contains garbage, iff there is a subexpression (letrec env in r) ,
and the environment env can be split into two environments env = env1; env2, such that env1 is
not trivial, and the atoms from LA(env1) occur neither in env2 nor in r. Otherwise, the expression
is free of garbage. Since α-equivalence of LRL-expressions is Graph-Isomorphism-complete [38], but
α-equivalence of garbage-free LRL-expressions is polynomial, it is useful to look for improvements of
unification and matching for garbage-free expressions.

As a remark: Graph-Isomorphism is known to have complexity between PTIME and NP ; there
are arguments that it is weaker than the class of NP-complete problems [43]. There is also a claim
that it is quasi-polynomial [10], which means that it requires less than exponential time.

Theorem 7.3. Nominal letrec matching with one occurrence of a single variable and a garbage-free
target expression is Graph-Isomorphism-hard.

Proof. Let G1, G2 be two regular graphs with degree ≥ 1. Let t be (letrec env1 in g b1 . . . , bm) the
encoding of an arbitrary graph G1 where env1 is the encoding as in the proof of Theorem 7.1, nodes
are encoded as a1 . . . an, and the edge-binders are bi. Then t is free of garbage. Let the environment
env2 be the encoding of G2 in s = (letrec env2 in X). Then s matches t iff the graphs G1, G2 are
isomorphic. Since the graph-isomorphism problem for regular graphs of degree ≥ 1 is GI-hard [12], we
have GI-hardness. If there is an isomorphism of G1 and G2, then it is easy to see that this bijection
leads to an equivalence of the environments, and we can instantiate X with (g b1 . . . , bm).

8 Nominal Letrec Matching with Environment Variables

We extend the language LRLX by variables E that may encode partial letrec-environments, which
leads to a larger coverage of unification problems in reasoning about the semantics of programming
languages.

Example 8.1. Consider as an example a rule (llet-e) of the operational semantics, that merges
letrec-environments (see [42]): (letrec E1 in (letrec E2 in X)) → (letrec E1; E2 in X). It
can be applied to an expression (letrec a.0; b.1 in (letrec c.(a, b, c) in c)) as follows: The left-
hand side (letrec E1 in (letrec E2 in X)) of the reduction rule matches (letrec a.0; b.1 in

(letrec c.(a, b, c) in c)) with the match: {E1 7→ {a.0; b.1}; E2 7→ {c.(a, b, c)};X 7→ c}, produc-
ing the next expression as an instance of the right hand side (letrec E1; E2 in X), which is
(letrec a.0; b.1; c.(a, b, c) in c). Note that for application to extended lambda calculi, more care
is needed w.r.t. scoping in order to get valid reduction results in all cases. The restriction that a
single letrec environment binds different variables becomes more important. The reduction (llet-e) is
correctly applicable, if the target expression satisfies the so-called distinct variable convention, i.e.,
if all bound variables are different and that all free variables in the expression are different from all
bound variables.
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An alternative that is used for a similar unification task in [39] requires an additional construct of
non-capture constraints: NCC (env1, env2), which means that for every valid instantiation ρ, variables
occurring free in env1ρ are not captured by the top letrec-binders in env2ρ. In this paper we focus on
matching, and leave the combination with reduction rules for further work.

Definition 8.2. The grammar for the extended language LRLXE (LetRec Language eXtended with
Environments) is:

env ::= E | π · E | a.e | env ; env
e ::= a | X | π ·X | λa.e | (f e1 . . . ear(c)) | (letrec env in e)

We define a matching algorithm, where environment variables may occur in left hand sides. It
needs a more expressive data structure in equations. The variant letr* of letrec is used with two
environment-components: (i) a list of bindings that are already fixed in the correspondence to the
bindings of the other environment, and (ii) an environment that is not yet fixed. We denote the fixed
bindings as a list, which is the always the first component. The scoping is the same. In the notation
we assume that the (non-fixed) letrec-environment part on the right hand side may be arbitrarily
permuted before the rules are applied. The justification for this data structure is the scoping in le-
trec expressions. The initial letrec-expression is represented as an expression letr∗ with an empty
list as first component, and the environment as the second component. We assume that there are
no environment-variable suspensions. This is appropriate, since the algorithm also does not generate
these suspensions.

Definition 8.3. The matching algorithm LetrecEnvMatch for expressions where environment
variables E and expression variables X may occur only in the left hand sides of match equations
is described below. We assume that there are no suspension of environment variables.
Initially, every (letrec env in e) is modified to (letr∗ ∅; env in e). The don’t know-non-determinism
is indicated in the rules, and additionally there is a choice between the two alternatives of the
environment-match rule.
The results are either match-equations x � e, E � ∅, or E � a.e;E′, where we indicate the latter as
part of the solution by writing E 7→ a.e;E′.
The rules are:

Γ ·∪{e � e}
Γ

Γ ·∪{(f s1 . . . sn) � (f s′1 . . . s
′
n)}

Γ ∪ {s1 � s′1, . . . , sn � s′n}
Γ ·∪{λa.s � λa.t}
Γ ∪ {s � t}

Γ ·∪{λa.s � λb.t}
Γ ∪ {s � (a b)·t}

if a#t, otherwise Fail

Γ ·∪{(letr∗ ls; a.s; env in r) � (letr∗ ls′; b.t; env ′ in r′)}
|

∀(b.t)
Γ ∪ {(letr∗ ((a.s) : ls); env in r) � (a b)(letr∗ ((b.t) : ls′); env ′ in r′)}

if a#(letr∗ ls′; b.t; env ′in r′), otherwise Fail.

Γ ·∪{(letr∗ ls; E ; env in r) � (letr∗ ls′; b.t; env ′ in r′)}
|

∀(b.t)
Γ ∪ {(letr∗ ((a.X) : ls);E′; env in r) � (a b)·(letr∗ ((b.t) : ls′); env ′ in r′)}

∪{E 7→ a.X;E′} If a#(letr∗ ls′; b.t; env ′ in r′).
Where a is guessed as an atom occuring in the problem, or a fresh one, such that a 6∈ LA(env).

Γ ·∪{(letr∗ ls; E ; env in r) � (letr∗ ls′; env ′ in r′)}
Γ ∪ {(letr∗ ls; env in r) � (letr∗ ls′; env ′ in r′)} ∪ {E � ∅}
Γ ·∪ {(letr∗ ls; ∅ in r) � (letr∗ ls′; ∅ in r′)}

Γ ∪ {ls � ls′, r � r′}
Γ ·∪{[e1, . . . , en] � [e′1, . . . , e

′
n]}

Γ ∪ {e1 � e′1, . . . , en � e′n}
Γ ·∪{π·X � e}
Γ ∪ {X � π−1e}

Γ ·∪{X � e1, X � e2}
Γ ∪ {X � e1}

if e1 ∼ e2 holds
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Γ ·∪{E � env1,E � env2}
Γ ∪ {E � env1}

if env1 ∼ env2 holds.

Clash Failure: If s � t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) 6= tops(t).

After successful execution, the result will be a set of match equations with components X � e, and
E � env , and E 7→ a.e;E′, which represents a matching substitution, where the letr∗-expressions
are retranslated to letrec-expressions.

Example 8.4. An example illustrates the effects of iterating the guessing:
Consider {(letr∗ []; a.(1, c); b.2; c.3 in 0) � (letr∗ []; b.(1, a); c.2; a.3 in 0)}.
It is arranged that the guesses can be made from left to right: After the first step:
{(letr∗ [a.(1, c)]; b.2; c.3 in 0) � (letr∗ [a.(1, b)]; c.2; b.3 in 0)}.
After the next steps we obtain:
{(letr∗ [a.(1, c), b.2]; c.3 in 0) � (letr∗ [a.(1, c), b.2]; c.3 in 0)}, and
{(letr∗ [a.(1, c), b.2; c.3]; ∅ in 0) � (letr∗ [a.(1, c), b.2, c.3]; ∅ in 0)}.
Then {a.(1, c) � a.(1, c), b.2 � b.2, c.3 � c.3, 0 � 0}, and the match will succeed.

Example 8.5. Another example illustrates the effects of iterating the guessing using environment vari-
ables: Consider {(letr∗ [];E; b.2; c.(3, a) in 0) � (letr∗ []; b.(1, a); c.2; a.(3, b) in 0)}. It is arranged
that the guesses can be made from left to right. It is not possible to guess E 7→ b.X;E′, since this
would violate the binding constraints for letrec-expressions. However, we can guess E to be a.X;E′:
{(letr∗ [a.X];E′; b.2; c.(3, a) in 0) � (letr∗ [a.(1, b)]; c.2; b.(3, a) in 0), E 7→ a.X;E′}. The next step
is to guess that E′ is empty. In particular a free atom in the left hand side can be guessed.

We claim that the algorithm is complete. The algorithm has to guess from an infinite set of fresh
atoms, however, since the names of fresh atoms are irrelevant, it is sufficient to use any fresh atom. A
clean mathematical treatment could be done using atom-variables using the techniques in section 10.

Theorem 8.6. The algorithm 8.3 (LetrecEnvMatch) is sound and complete. It runs in non-
deterministic polynomial time. The corresponding decision problem is NP-complete. The collecting
version of LetrecEnvMatch returns an at most exponentially large, complete set of representations
of matching substitutions, where the representations are of at most polynomial size.

Proof. The reasoning for soundness, completeness and termination in polynomial time is a variation
of previous arguments. The nonstandard part is fixing the correspondence of environment parts step-
by-step and keeping the scoping.

9 On Fixpoints and Garbage

We show in this section that LRLX -expressions without garbage have only trivial fixpointing per-
mutations. The idea is that garbage is defined as a subset of bindings that can be removed with-
out losing any definition of variables (atoms) in the in-part of the letrecs. Looking at Example
3.2, the α-equivalence (a b) · (letrec c.a; d.b in True) ∼ (letrec c.a; d.b in True) holds, where
dom((a b)) ∩ FA(letrec c.a; d.b in True) = {a, b} 6= ∅. However, we see that the complete environ-
ment in this example is garbage, from a programming language point of view.

As a helpful information, we write the α-equivalence-rule for letrec-expressions in the ground
language LRL as an extension of the rule for lambda-abstractions.

r ∼ ϕ′·r′, si ∼ ϕ′·tρ(i), i = 1, . . . , n, M#(letrec b1.t1; . . . ; bn.tn in r′)

letrec a1.s1; . . . ; an.sn in r ∼ letrec b1.t1; . . . ; bn.tn in r′

where ρ is a permutation on {1, . . . , n}, M = {a1, . . . , an} \ {b1, . . . , bn}, and ϕ is a smallest
atom-permutation-extension of the bijective function {bi 7→ aρ(i), i = 1, . . . , n} such that
dom(ϕ) ⊆ ({b1, . . . , bn} ∪ {a1, . . . , an}), and ϕ(M) = ({b1, . . . , bn} \ {a1, . . . , an}).
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Note that α-equivalence of s, t means structural equivalence of s, t as trees, and a justification
always comes with a bijective relation between the positions of s, t where only the names of atoms at
nodes may be different.

Definition 9.1. An expression (letrec E in e) contains garbage, if E is not empty and there is a
nonempty subset of bindings E ′ ⊆ E, such that FA(letrec E ′ in e) = FA(letrec E in e).

An example is (letrec a.0; b.1 in (f b)), where a is unused, but b is used in the right
hand side. In this case we say, a.0 is garbage. Another example is (letrec a.d; b.1; c.d in (f b)),
which is an example with a free atom d, and two bindings, a.d and c.d which is α-equivalent to
(letrec a′.d; b.1; c′.d in (f b)) =: e. Note that in this case, there are two different bijective functions
(modulo αequivalence) on e: {a′ 7→ a; c′ 7→ c} and {a′ 7→ c; c′ 7→ a}.

The next lemma shows that this situation is only possible if the expressions contain garbage.

Lemma 9.2. If s ∼ t, and s is free of garbage, then α-equivalence provides a unique correspondence
of the positions of s and t.

Proof. The proof is by induction on the structure and size of expressions. For the structure, the only
nontrivial case is letrec: If s = (letrec a1.e1, . . . , an.en in e) ∼ (letrec b1.f1, . . . , bn.fn in f) = t, then
there is bijective mapping ϕ, with ϕ(bi) = aρ(i), i = 1, . . . , n, where ρ is a permutation on {1, . . . , n},
and such that ei ∼ ϕ(fρ(i)), i = 1, . . . , n, e ∼ ϕ(f), and ({a1, . . . , an} \ {b1, . . . , bn})#t holds. Let
ϕ be the atom-permutation that extends ϕ, mapping ({a1, . . . , an} \ {b1, . . . , bn}) to ({b1, . . . , bn} \
{a1, . . . , an}).

The induction hypothesis implies a unique position correspondence of e and f , since e ∼ ϕ(f).
This implies that the bindings for {a1, . . . , an} ∩ FA(e) have a unique correspondence to the bindings
in t. This is continued by exhaustively following free occurrences of atoms ai in the right hand sides
of the top bindings in s. Since there is no garbage in s, all bindings can be reached by this process,
hence we have uniqueness of the correspondence of positions.

Proposition 9.3. Let e be an expression that does not have garbage, and let π be a permutation.
Then π·e ∼ e implies dom(π) ∩ FA(e) = ∅.

Proof. The proof is by induction on the size of the expression.

– If e is an atom, then this is trivial.
– If e = f e1 . . . .en, then no ei contains garbage, and π·ei ∼ ei implies dom(π) ∩ FA(ei) = ∅, hence

also dom(π) ∩ FA(e) = ∅.
– If e = λa.e′, then there are two cases:

1. π(a) = a. Then π·e′ ∼ e′, and we can apply the induction hypothesis.
2. π(a) = b 6= a. Then (a b)·π fixes e′, and b#e′. The induction hypothesis implies dom((a b)·π)∩

FA(e′) = ∅. We have dom(π) ⊆ dom((a b)·π)) ∪ {a, b}, hence dom(π) ∩ FA(λa.e′) = ∅.
– First a simple case with one binding in the environment: t = (letrec a1.e1 in e), π·t ∼ t. If
π(a1) = a1, then π·(e, e1) ∼ (e, e1), and the induction hypothesis implies dom(π) ∩ FA(e, e1) = ∅,
which in turn implies dom(π) ∩ FA(t) = ∅.
If π(a1) = b 6= a1, then b#(e, e1) and for π′ := (a1 b)·π, it holds π′·(e, e1) ∼ (e, e1), and so
dom((a1 b)·π) ∩ FA(e, e1) = ∅. since dom(π) ⊆ dom((a1 b)·π) ∪ {a1, b}, we obtain dom(π) ∩ t = ∅.
In the case of one binding, it is irrelevant whether the binding is garbage or not.

– Let t = (letrec a1.e1; . . . ; an.en in e), and t is a fixpoint of π, i.e. π(t) ∼ t. Note that no
part of the environment is garbage. The permutation π can be splitted into π = π1·π2, where
dom(π1) ⊆ FA(t) and dom(π2) ∩ FA(t) = ∅. From t ∼ π·t and Lemma 9.2 we obtain that there
is a unique permutation ρ on {1, . . . , n}, such that there is an injective mapping ϕ : π(a1) 7→
aρ(1), . . . , π(an) 7→ aρ(n), and e ∼ ϕπ(e), eρ(i) ∼ ϕπ(ei). Then α-equivalence implies that ϕπ can
be extended to a atom-permutation ϕπ by mapping the atoms in {a1, . . . , an} \ {π(a1), . . . , π(an)}
bijectively to {π(a1), . . . , π(an)} \ {a1, . . . , an}. By the freshness constraints for α-equivalences of
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letrec-expressions, ϕπ(e) = ϕπ(e) and ϕπ(ei) = ϕπ(ei) which in turn implies that e ∼ ϕπ(e) and
ei ∼ ϕπ(ie), and we can apply the induction hypothesis.
This shows that FA(e) \ {a1, . . . , an} are not moved by ϕπ, and the same for all ei, hence this also
holds for t.

Corollary 9.4. Let e be an expression that does not have garbage, and let π be a permutation. Then
π·e ∼ e is equivalent to dom(π) ∩ FA(e) = ∅.

Proof. This follows from Proposition 9.3. Note that the other direction is easy.

The proof also shows a slightly more general statement:

Corollary 9.5. Let e be an expression such that in all environments with at least 2 bindings there are
no garbage bindings, and let π be a permutation. Then π·e ∼ e is equivalent to dom(π) ∩ FA(e) = ∅.

In case that the input does not represent garbage-parts, and the solutions are not intended to
represent expressions with garbage, the set of rules in the case without atom-variables can be optimized
as follows: (ElimFP) can be omitted and instead of (FPS) there are two rules:

(FPS2)
Γ ·∪{X .

= π·X},∇
Γ,∇∪ {a#X | a ∈ dom(π)}

,

(ElimX)
Γ ·∪{X .

= e}, θ
Γ, θ ∪ {X 7→ e}

, if X 6∈ Var(Γ ), and e is not of the form π·X for any π.

Example 9.6. It cannot be expected that the letrec-decomposition rule (7) can be turned into a deter-
ministic rule, and to obtain a unitary nominal unification, under the restriction that input expressions
are garbage-free, and also instantiations are garbage-free. Consider the equation:

(letrec a1.e1; a2.e2 in ((a1, a2), X))
.
= (letrec b1.f1; b2.f2 in (X ′, (b1, b2))).

Then the in-expressions do not enforce a unique correspondence between the bindings of the left and
right-hand bindings. An example also follows from the proof of Theorem 7.3, which shows that even
nominal matching may have several incomparable solutions for garbage-free expressions.

10 Nominal Unification with Letrec and Atom-Variables

In this section we extend the unification algorithm to the language LRLXA, which is an extension
of LRLX with atom variables. Atom-variables have a higher expressive power: For example if in an
application example it is known that in a pair (x, y) there must be atoms, but x = y as well as x 6= y is
possible, then two different unification problems have to be formulated. If atom variables are possible,
then the fomulation (A1, A2) covers both possibilities.

It is known that the nominal unification problem (without letrec) but with atom-variables is NP-
complete [41]. An algorithm and corresponding rules and discussions can be found in [41].

10.1 Extension with Atom-Variables

As an extension of LRLX , we define LRLXA as follows: Let A denote atom variables, V denote atom
variables or atoms, W denote suspensions of atoms or atom variables, π a permutation, and e an
expression. The syntax of the language LRLXA is

V ::= a | A
W ::= π · V
π ::= ∅ | (W W ) | π◦π
e ::= π·X |W | λW.e | (f e1 . . . ear(f)) | (letrec W1.e1; . . . ;Wn.en in e)
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Var is the set of variables and Var(e) is the set of variables A,X occurring in e.

The expression π·e for a non-variable expression e means an operation, which is performed by
shifting π down, removing the permutation ∅, using the simplifications π1·(π2·X) → (π1 ◦ π2)·X, and
apply it to atoms, where only expressions π·X or π·V remain, which are called suspensions and where
π·V is denoted as W . However, note that nested permutations are permitted, since in general, these
cannot be simplified.

A freshness constraint in our unification algorithm is of the form V#e where e is an LRLXA-
expression. The notation π−1 is defined as the reversed list of swappings of π. We also use π · V#e as
syntactic sugar for the constraint V#π−1 ◦ e.

Not all ground substitutions map LRLXA-expressions to valid LRL expressions. It is also not
sufficient to only take ‘valid’ ground substitutions into account, as this leads to problems with the
composability of unifications problems and renaming of bound variables within expressions, as the
following example shows.

Example 10.1. The equation

(app (letrec A.a,B.a in B) A)
.
= (app (letrec A.a,B.a in B) B)

enforces that A,B are instantiated with the same atom, which contradicts the syntactic assumption
on distinct atoms for the binding names in letrec-expressions. However,

(app (letrec A.a,C.a in C) A)
.
= (app (letrec A.a,D.a in D) B)

is solvable. To avoid this problem, the freshness constraints in unification problems need to ensure
distinct binding variables in every letrec-expression in the input.

Definition 10.2. An LRLXA-unification problem is a pair (Γ,∇), where Γ is a set of equations
s

.
= t, and ∇ is a set of freshness constraints V#e. In addition, for every letrec-subexpression

letrec W1.e1, . . . ,Wm.em in e, which occurs in Γ or ∇, the set ∇ must also contain the freshness
constraint Wi#Wj for all i, j = 1, . . . ,m with i 6= j.

A (ground) solution of (Γ,∇) is a substitution ρ (mapping variables in Var(Γ,∇) to ground ex-
pressions), such that sρ ∼ tρ for all equations s

.
= t in Γ , and for all V#e ∈ ∇: V ρ#(eρ) holds.

The decision problem is whether there is a solution for a given (Γ,∇).

Proposition 10.3. The LRLXA-unification problem is in NP.

Proof. The argument is that every ground instantiation of an atom variable is an atom, which can be
guessed: guess the images of atom variables under a ground solution ρ in the set of atom variables in
the current state, and in an arbitrary set of fresh atom variables of cardinality at most the number of
different atom variables in the input; then instantiate using ρ, thereby removing all atom-variables. The
resulting problem can be decided (and solved) by an NP-algorithm as shown in this paper (Theorem
5.1).

Remark 10.4. Note that the equation A = π·B for atom variables A,B can be encoded as the freshness
constraint A#λπ·B.A. In the following we may use equations A =# π·B as a readable version of
A#λπ·B.A.

10.2 Rules of the Algorithm LetrecUnifyAV

Now we describe the nominal unification algorithm LetrecUnifyAV for LRLXA. It will extend
the algorithm LetrecUnify by a treatment of atom variables that extend the expressibility. It has
flexible rules, such that a strategy can be added to control the non-determinism and such that it is an
improvement over a brute-force guessing-algorithm (see the algorithm 10.11 for such an improvement).
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(1)
Γ ·∪{e .

= e}
Γ

(2)
Γ ·∪{π ·X .

= e} e 6∈ Var

Γ ∪ {X .
= π−1 · e}

(3)
Γ ·∪{X .

= π·Z},∇, θ X 6= Z

Γ [π·Z/X],∇[π·Z/X], θ ∪ {X 7→ π·Z} (3’)
Γ ·∪{π·A .

= π′·B},∇, θ
Γ,∇∪ {A =# π−1π′·B}, θ

(4)
Γ ·∪(f (π1·X1) . . . (πn·Xn))

.
= (f (π′1·X ′1) . . . (π′n·X ′n))}

Γ ∪ {π1·X1
.
= π′1·X ′1, . . . , πn·Xn

.
= π′n·X ′n}

(5)
Γ ·∪(λW.π1·X1

.
= λW.π2·X2}

Γ ∪ {π1·X1
.
= π2·X2}

(6)
Γ ·∪(λW1.π1·X1

.
= λW2.π2·X2},∇

Γ ∪ {π1·X1
.
= (W1 W2)·π2·X2},∇∪ {W1#(λW2.π2·X2)}

(7)

Γ ·∪
{
letrec W1.π1·X1; . . . ;Wn.πn·Xn in τ ·Y .

=
letrec W ′1.π

′
1·X ′1; . . . ;W ′n.π

′
n·X ′n in τ ′·Y ′

}
,∇∣∣∣∣∣∣

∀ρ

Γ ∪
{

decompose(n+1, λW1 . . . λWn.(π1·X1, . . . , πn·Xn, τ ·Y )
.
= λW ′ρ(1). . . . λW

′
ρ(n).(π

′
ρ(1)·X ′ρ(1), . . . , π′ρ(n)·X ′ρ(n), τ ′·Y ′))

}
,

∇∪
{

decompfresh(n+1, λW1 . . . λWn.(π1·X1, . . . , πn·Xn, τ ·Y )
.
= λW ′ρ(1). . . . λW

′
ρ(n).(π

′
ρ(1)·X ′ρ(1), . . . , π′ρ(n)·X ′ρ(n), τ ′·Y ′))

}


where ρ is a permutation on {1, . . . , n} and decompose(n, .) is the equation part of n-fold
application of rules (4), (5) or (6) and decomposefresh(n, .) is the freshness constraint
part of the n-fold application of rules (4), (5) or (6).

Fig. 4. Standard and decomposition rules with atom variables of LetrecUnifyAV.

The rules are the same as (MMS), (FPS), (ElimFP) and (Output) as in Fig 2. In addition:

(ElimA)
Γ,∇, θ

Γ [a/A],∇[a/A], θ ∪ {A 7→ a} ,
where we guess the following: some atom variable A occurring in
Γ,∇ and an atom a that occurs in Γ,∇, θ, or is a fresh atom.

Fig. 5. Main rules of LetrecUnifyAV

Note that permutations with atom variables may lead to an exponential blow-up of their size,
which is defeated by a compression mechanism. Note also that equations A

.
= e, in particular A

.
= π·A′,

cannot be resolved by substitution for two reasons: (i) the atom variable A may occur in the right
hand side, and (ii) due to our compression mechanism (see below), the substitution may introduce
cycles into the compression, which is forbidden.

Definition 10.5. The algorithm LetrecUnifyAV operates on a tuple (Γ,∇, θ), where the rules are
defined in Figs. 4 and 5, and the following explanations:

1. Γ is a set of flattened equations e1
.
= e2, where we assume that

.
= is symmetric,

2. ∇ contains freshness constraints, where some may be written as equations of the form A =# π·A′
[41] , for simplicity.

3. θ represents the already computed substitution as a list of replacements of the form X 7→ e. We
assume that the substitution is the iterated replacement. Initially θ is empty.

The final state will be reached, i.e. the output, when Γ only contains fixpoint equations of the form
X

.
= π·X, and the rule (Output) fires.

In the notation of the rules, we will use [e/X] as substitution that replaces X by e. We may omit
∇ or θ, if they are not changed. We will also use a notation “|” in the consequence part of one
rule, with a set of possibilities, to denote disjunctive (i.e. don’t know) nondeterminism. There are two
non-deterministic rules with disjunctive non-determinism: the letrec-decomposition rule (7) exploring
all alternatives of the correspondence between bindings; the other one is (ElimA) that guesses the
instantiation of an atom-variable. In case it is guessed to be different from all currently used atoms,
we remember this fact (for simplicity) by selecting a fresh atom for instantiation. The other rules can
be applied in any order, where it is not necessary to explore alternatives.
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As a last step the fresh atoms have to be replaced by fresh atom-variables together with the following
extra constraints in ∇: A#A′ for different fresh atom variables A,A′, and A#a for fresh atom variables
A and atoms a in the problem.

We assume that permutations in the algorithm LetrecUnifyAV are compressed using a grammar-
mechanism, as a variation of grammar-compression in [27, 19]. However, we do not mention it in the
rules of the algorithm, but we will use it in the complexity arguments.

Definition 10.6. The components of a permutation grammar G, used for compression, are:

– Nonterminals Pi.

– For every nonterminal Pi there is an associated inverse Pj, which can also be rewritten P i.

– Rules of the form Pi → w1 . . . wn, where wi is either a nonterminal or a terminal. At all times
P i → wn . . . w1 holds, i.e. if a nonterminal is added its inverse is added accordingly. Usually,
n ≤ 2, but also another fixed bound is possible.

– Terminal elements are ∅, or (P ·V1 P ′·V2).

The grammar is deterministic: every nonterminal is on the left-hand side of exactly one rule. It is also
non-recursive: the terminal index is such that Pi can only be in right-hand sides of the nonterminal
Pj with j < i.

The function inv, mapping Pi → P i and T → T for terminals T computes the inverse in constant
time. This is true by construction, because if P → w1 . . . wn then inv(P ) → inv(wn) . . . inv(w1) and
inv(T ) = T for terminals.

Every nonterminal P represents a permutation val(P ), which is computed from the grammar as
follows:

1. val(P ) = val(w1) . . . val(wn) (as a composition of permutations), if P → w1 . . . wn.

2. val(∅) = Id.

3. val((P1·V1 P2·V2)) = (val(P1)·V1 val(P2)·V2).

Lemma 10.7. For nonterminals P of a permutation grammar G, the permutation val(inv(P )) is the
inverse of val(P ).

Let S be the size of the initial unification problem.

Proposition 10.8. Let G be a permutation grammar, and let P be a nonterminal, such that val(P )
contains n atoms, and does not contain any atom variables. Then val(P ) can be transformed into a
permutation of length at most n in polynomial time.

Proof. For every P the size of the set At(P ) has an upper bound S and can be computed in time
O(S ·log(S) For every such atom a ∈ At(P ) we compute its image P ·a and save the result in a mapping
from atoms to atoms. The computation of P · a can be done in O(S|2), yielding a total of O(S3) for
the construction of this map, which has size O(S). At last, the construction of the permutation list
can be done in linear time, i.e. O(S).

Now we consider the operations to extend the grammar during the unification algorithm.

Proposition 10.9. Extending the grammar G n times can be performed in polynomial time in n, and
the size of the initial grammar G.

Proof. We check the extension operations:
Adding a nonterminal can be done in constant time. Adding an inverse of P is in constant time, since
the inverses of the sub-permutations are already available. Adding a composition P = P1·P2 and at
the same time the inverse, can be done in constant time.
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As a summary we obtain: Generating the permutation grammar on the fly during the execution of the
unification rules can be done in polynomial time, since (as we will show below) the number of rule
exeuctions is polynomial in the size of the initial input. Also the operation of applying a compressed
atom-only permutation to an atom is polynomial.

Note that (MMS) and (FPS), without further precaution, may cause an exponential blow-up in the
number of fixpoint equations (see Example 4.6). The rule (ElimFP) will limit the number of fixpoint
equations for atom-only permutations by exploiting knowledge on operations on permutation groups.
The rule (ElimA) can be used according to a dynamic strategy (see below): if the space requirement
for the state is too high, then it can be applied until simplification rules make (Γ,∇) smaller.

The rule (Output) terminates an execution on Γ0 by outputting a unifier (θ,∇′,X ), where the
solvability of ∇′ needs to be checked using methods as in the algorithm proposed in [41]. The meth-
ods are to non-deterinistically instantiate atom-variables by atoms, and then checking the freshness
constraints, which is in NP (see also Theorem 5.1).

We will show that the algorithm runs in polynomial space and time without brute forcing the
(ElimA) rule by specifying a strategy. Let S be the size of the original unification problem. There are
two rules, which can lead to a size increase of the unification problem – not taking the permutations
into account – (MMS) and (FPS).

– (MMS) Given the equations X
.
= e1, X

.
= e2, the increase of the size of Γ after the application of

the rule has an upper bound O(S).

– (FPS) Given X
.
= π1·X, . . . ,X

.
= πk·X,X

.
= e, the size increase has an upper bound O(S). Unlike

with permutations with atoms, it is not known whether there exists a polynomial upper bound of
the number of independent permutations with atom variables - but it seems very unlikely.

Definition 10.10. Let p(x) be some function IR+ → IR+. The rule ElimAB(p) is defined as follows:

– ElimAB(p): If there are k > p(S) fixpoint equations X
.
= π1·X, . . . ,X

.
= πk·X in Γ for the same

variable X, then apply (ElimA) on all A ∈ AtV ar(π1, . . . , πk). Then immediately apply (ElimFP)
exhaustively.

Definition 10.11. The guided version LetrecUnifyAVB(p) of LetrecUnifyAV is obtained by
replacing (ElimA) with ElimAB(p) where p(x) is some (easily computable) function IR+ → IR+, s.t.
∀x ∈ IR+ : q(x) ≥ p(x) ≥ x ∗ log(x) holds for some polynomial q. In addition the priority of the rules
is as follows, where highest priority comes first: (1), . . . , (6), (ElimFP), (MMS), (Output). Then
ElimAB(p), (FPS), and the nondeterministic rule (7) with lowest priority.

Lemma 10.12. Let Γ,∇ be a solvable input. For every function p(x) with ∀x ∈ IR+ : p(x) ≥ x log(x),
LetrecUnifyAVB(p) does not get stuck, and the number of fixpoint equations per expression variable
is limited by p(S), where S is the size of the original input.

Proof. The upper bound of the number of fixpoint equations is proven as follows: Let m be the
number of atoms in the original unification problem. The rule (ElimA) introduces at most S−m new
atoms, which implies at most S atoms at any time. If LetrecUnifyAVB(p) reaches its upper bound
and applies ElimAB(p) on the fixpoint equations X

.
= π1·X, . . . ,X

.
= πk·X, the number of fixpoint

equations of X can be reduced to at most S log(S) ≤ p(S) (see the proof of Theorem 5.1).

Since the input is solvable, the choices can be made accordingly, guided by the solution, and then
it is not possible that there is an occurs-check-fail for the variables. Hence if the upper line of the
preconditions of (FPS) is a part of Γ , there will also be a maximal variable X, such that the condition
X 6∈ Var(Γ, e) can be satisfied.

Theorem 10.13. Let Γ,∇ be a solvable input. For every function p(x) such that there is a polyno-
mial q(x) with ∀x : q(x) ≥ p(x) ≥ x log(x), LetrecUnifyAVB(p) does not get stuck and runs in
polynomial space and time.
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Proof. The proof is inspired by the proof of Theorem 5.1, and uses Lemma 10.12 according to which
the number of fixpoint-equations for a single variable is at most p(S).

Below we show some estimates on the size and the number of steps. The termination measure
(#Var,#LrλFA,#Eqs,#EqNonX), which is ordered lexicographically, is as follows:
#Var is the number of different variables in Γ ,
#LrλFA is the number of letrec-, λ, function-symbols and atoms in Γ , but not in permutations,
#Eqs is the number of equations in Γ , and
#EqNonX is the number of equations where non of the equated expressions is a variable.

Since shifting permutations down and simplification of freshness constraints both terminate and
do not increase the measures, we only compare states which are normal forms for shifting down
permutations and simplifying freshness constraints.

The following table shows the effect of the rules: Let S be the size of the initial (Γ0,∇0) where
Γ is already flattened. Again, the entries +W represent a size increase of at most W in the relevant
measure component.

#Var #LrλFA #Eqs #EqNonX

(3) < ≤ = ≤
(FPS) < +2p(S) < +2p(S)
(MMS) = < +2S =
(4), (5), (6), (7) = < +S ≤
ElimAB(p) = = < ≤
(1) ≤ ≤ < ≤
(2) = = = <

The table shows that the rule applications strictly decrease the measure. The entries can be verified
by checking the rules, and using the argument that there are not more than p(S) fixpoint equations
for a single variable X. We use the table to argue on the number of rule applications and hence the
complexity: The rules (3) and (FPS) strictly reduce the number of variables in Γ and can be applied
at most S times. The rule (FPS) increases the second measure at most by 2p(S), since the number of
symbols may be increased as often as there are fixpoint-equations, and there are at most p(S). Thus
the measure #LrλFA will never be greater than 2Sp(S).

The rule (MMS) strictly decreases #LrλFA, hence#Eqs, i.e. the number of equations is bounded
by 4S2p(S). The same bound holds for #EqNonX. Hence the number of rule applications is O(S2p(S)).
Of course, there may be a polynomial effort in executing a single rule, and by Proposition 10.9 the
contribution of the grammar-operations is also only polynomial. Finally, since p(x) is polynomially
bounded by q(x), the algorithm can be executed in polynomial time.

11 Conclusion and Future Research

We constructed nominal letrec unification algorithms, for the case where only atoms are permitted,
and also for the case where atom variables are permitted. We also described several nominal letrec
matching algorithms for variants, which all run in nondeterministic polynomial time. Future research
is to investigate extensions of unification with environment variables E as an extension of the match-
ing algorithm with environment variables, to investigate the connection with equivariant nominal
unification [16, 14, 1], and to investigate nominal matching together with equational theories. Also
applications of nominal techniques to reduction steps in operational semantics of calculi with letrec
and transformations should be investigated.
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gramming, 18(04):503–551, 2008.
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