
Embedding the Pi-Calculus into a Concurrent
Functional Programming Language ?

Manfred Schmidt-Schauß1 and David Sabel1,2

1 Goethe-University Frankfurt, Germany
{schauss,sabel}@ki.cs.uni-frankfurt.de

2 LMU Munich, Germany david.sabel@lmu.de

Technical Report Frank-60

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

October 21, 2019
This version corrects and extends the report from February 2019.

Abstract. We investigate translations from the synchronous pi-calculus
into a core language of Concurrent Haskell (CH). Synchronous message-
passing of the pi-calculus is encoded as sending messages and adding
synchronization using Concurrent Haskell’s mutable shared-memory lo-
cations (MVars). Our correctness criterion for translations is invariance
of may- and should-convergence. This embraces that all executions of
a process are error-free if and only if this also holds for the translated
program. We exhibit a particular correct translation that uses a fresh,
private MVar per communication interaction and that is in addition ad-
equate, and which is also fully abstract on closed expressions. A meta-
result is that CH has the expressive power and the concurrency capabil-
ities of the synchronous pi-calculus.
We also automatically check variants of translations of synchronous com-
munication into an asynchronous calculus where only an a priori fixed
number of MVars per channel (and not per communication interaction!)
is available. We obtain non-correctness results for classes of small trans-
lations, and exemplary argue for the correctness (and adequacy) for two
translations with a higher number of MVars. We introduce a classifica-
tion of the potentially correct translations.

Keywords: pi-calculus, functional programming, concurrency, adequate trans-
lations
? The first author is supported by the Deutsche Forschungsgemeinschaft (DFG) under

grant SCHM 986/11-1.The second author is supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant SA2908/3-1.

2 M. Schmidt-Schauß and D. Sabel

1 Introduction

Motivation and Goals. We are interested in the semantics of concurrent and
declarative programming languages, where we focus on the expressiveness of the
languages and their primitives. A powerful method is the investigation of trans-
lations between the programming languages and calculi, which indicate their
relative expressiveness. We will mainly compare the π-calculus with Concurrent
Haskell [16,8].

The well-known π-calculus [13,12,26] is a minimal model for mobile and con-
current processes. Data-flow is possible by communication between processes,
i.e. by passing messages between them. Channel names are sent as messages,
and processes and links between processes can be dynamically created and re-
moved which together makes processes mobile. The interest in the π-calculus is
not only due to the fact that it is used and extended for various applications, like
reasoning about cryptographic protocols [1], applications in molecular biology
[18], and distributed computing [10,6]. The π-calculus also permits the study
of intrinsic principles and semantics of concurrency, of concurrent programming
and the inherent nondeterministic behavior of mobile and communicating pro-
cesses. The investigated variant of the π-calculus in this paper is the synchronous
π-calculus with replication, but without sums, matching operators, or recursion.
To observe termination of a process, the investigated π-calculus has a constant
Stop which signals successful termination.

We motivate the use of Concurrent Haskell as a target language, and why
usual sequential Haskell (or even Haskell extended by erratic non-determinism)
is insufficient: a reason is that the degree of expressiveness for concurrency can
be assessed by so-called parallel-convergence testing [19,17]. In the π-calculus
with Stop the context (·|·) is a parallel-convergence tester. Deterministic lan-
guages like Haskell do not have parallel-convergence testers. Core-Haskell with
erratic choice (i.e., a construct that permits to choose between two expressions)
appears to be more expressive, however, this and similar calculi do not have
a parallel-convergence testing context P [·, ·]. Informally, the reason is that if
P [v,⊥] as well as P [⊥, v] converge for values v, then in such programming lan-
guages P [e1, e2] has to converge independently of expressions e1, e2 (in particu-
lar, P [⊥,⊥] must also converge). There are stronger nondeterministic primitives,
like McCarthy’s amb-operator [11], which can express parallel-convergence test-
ing contexts (see e.g. [21]). Concurrent Haskell [16,8] is very powerful and has a
parallel-convergence testing context.

For our technical investigation, we will introduce CH that is a core calcu-
lus modeling Concurrent Haskell. The calculus CH is a process calculus where
threads evaluate expressions from a lambda calculus extended by data construc-
tors, case-expressions, recursive let-expressions, and Haskell’s seq-operator. Also
monadic operations (sequencing and creating threads) are available. The shared
memory is modeled by MVars (mutable variables) which are one-place buffers
that can be either filled or empty and are blocking if a thread tries to fill a full
buffer or to empty an empty buffer. The calculus CH is also a variant (or a
subcalculus) of the calculus CHF [22,23] which extends Concurrent Haskell by

Embedding the Pi-Calculus into CH 3

futures in order to increase the declarativeness of such languages. Technically,
we will reuse studies and results on the contextual semantics of CHF also for
CH .

The contextual semantics of concurrent programming languages is a gener-
alization of extensionality: The test for a program P is whether C[P] for all
program-contexts C successfully terminates (converges) or not. For concurrent
programs or processes we use two observations: may-convergence – at least one
execution path terminates successfully, and should-convergence – every inter-
mediate state may-converges. An alternative nondeterministic observation is
must-convergence (all execution paths terminate successfully). The advantage
of equivalence notions based on may- and should-convergence are their invari-
ance under fairness restrictions, the preservation of deadlock-freedom, and the
equivalence of busy-wait and wait-until behavior (see e.g. [29]). Showing equal
expressivity of two (concurrent) calculi by a translation τ is founded on correct-
ness of τ : τ leaves may- and should-convergence invariant. The property which is
the gold-standard is adequacy (see Definition 4.4), which holds if τ(P1) � τ(P2)
implies P1 � P2, for the contextual preorders and for all processes P1, P2. Full-
abstractness, i.e. τ(P1) � τ(P2) iff P1 � P2 only holds in the rare case that the
two calculi are more or less the same. In this paper we will study whether the
π-calculus can be embedded into CH , which requires to find at least one very
good translation. Our translation τ0 (defined and analyzed in Sect. 4) is one of
these.

Our Approach. The main issue in finding a correct translation from π-processes
to CH -programs is to correctly encode the synchronous communication of the
π-calculus. Indeed, a considerable part of this paper will deal with this, and we
will provide different proposals. The problem is that the so-called MVars in CH
(see also [16]) have an asynchronous behavior. To implement synchronous com-
munication the weaker synchronization property of MVars has to be exploited,
where we must be aware of the potential interference of the executions of other
translated communications on the same channel. The task of finding such trans-
lations is reminiscent of the channel-encoding used in [16], but, however, there
an asynchronous channel is implemented while we look for synchronous commu-
nication.

We first provide a translation τ0 which uses a private MVar, which ensures
that no other sender or receiver can interfere with the interaction. This idea
was already used in [9,3]. We succeeded in mathematically confirming that the
translation τ0 has strong and nice semantic properties.

Since we are also interested in simple translations and efficient results (for
instance, the approach of using private names generates a new MVar for each
communication), we tried to find correct translations with a fixed and static
number of MVars per channel in the π-calculus. Since this task is too complex
and error-prone for hand-crafting, we automated the search by implementing a
procedure to rule out incorrect translations3. Thereby we assumed per commu-

3 The tool and some output generated by the tool are available via
http://goethe.link/refute-pi

http://goethe.link/refute-pi

4 M. Schmidt-Schauß and D. Sabel

nication channel a single MVar for exchanging the channel-name and perhaps
several additional MVars of unit type to perform checks whether the message was
send / or received (we will call them check-MVars). The summarized results of
this automated search technique are that there is a correct translation that uses
two check-MVars, where one is used as a mutex between all senders or receivers
on one channel, and there are correct translations using three additional MVars
where the filling and emptying operations for each MVar must not come from
the same sender or receiver. The experiments lead to the conjecture that there
is no translation using only one check-MVar. We also provide formal arguments
for the correctness of some of the minimal translations with global names.

These results will also permit to draw the conclusion that the expressiveness
of the π-calculus is completely available in Concurrent Haskell.

Results. Our novel results are the definition of a translation τ0 from the π-
calculus into CH , adequacy of the open translation τ (Theorem 4.10), and
full abstraction of τ on closed π-processes (Theorem 4.12). From a technical
point of view, a novelty is the comparison of the π-calculus with a concur-
rent programming language using contextual semantics for may-convergence and
should-convergence in both calculi, which is technically involved since the syn-
tactic details of the standard reductions in both calculi have to be analyzed. The
adaptation of the adequacy and full abstraction notions (Definition 4.4) for open
processes is also novel [27,28]. We further define a quite general formalism for
the representation of translations with global names and analyze different classes
of such translations by an automated tool. In particular, we show correctness of
two particular of these translations in Theorems 5.9 and 5.11.

Further Related Work. Encodings of synchronous communication by asyn-
chronous communication using a private name mechanism are given in [9,3] for
(variants of the) π-calculus. Our idea of the translation τ0 similarly uses a pri-
vate MVar to encode the channel based communication, but clearly our setting
is different, since our target language is Concurrent Haskell. In [15] the expres-
siveness of synchronous and asynchronous communication in the π-calculus was
compared where non-encodability is a main result, however, with several restric-
tions on the encoding. For instance rule out encodings that do not encoding par-
allel composition into parallel composition etc. We do not use such restrictions,
and our approach focuses on the equivalence w.r.t. may- and should-convergence
and the semantic notion of adequacy and full-abstractness.

Work on translations of the π-calculus into programming languages, cal-
culi and logical systems and investigating the properties is [2], where a trans-
lation into a graph-rewriting calculus is given and soundness and completeness
w.r.t. the operational behavior is proved. The article [30] shows a translation and
a proof that the π-calculus is exactly operationally represented. There are sev-
eral works on session types which are related to the π-calculus, for instance, [14]
studies encodings from a session calculus into PCF extended by concurrency and
effects and also an embedding in the other direction, mapping PCF extended by
effects into a session calculus. The obtained result is a (quite strong) operational
correspondence between both calculi.

Embedding the Pi-Calculus into CH 5

Outline. The structure of the paper is as follows. After introducing both calculi
in Sects. 2 and 3, the translation using private names is defined, explained and
proved to be correct in Sect. 4. In Sect. 5 we introduce translations with global
names and present our framework for automated search of (invalid) translations.
We conclude and discuss future work in Sect. 6. To improve readability and due
to space constraints several proofs are given in a technical appendix.

2 The π-Calculus with Stop

We explain the synchronous π-calculus [13,12,26] without sums and with repli-
cation in a variant extended with a constant Stop [24], that signals successful
termination of the whole π-calculus program. The π-calculus without Stop and
with so-called barbed convergences [25] are equivalent w.r.t. contextual seman-
tics (see Theorem D.4 in the appendix). Thus, adding the constant Stop is not
essential, however, the treatment and the translation are easier to explain for
the π-calculus with Stop.

Definition 2.1. Let N be a countable set of (channel) names and x, y ∈ N .
The syntax of processes is P,Q ∈ ΠStop := νx.P | xy.P | x(y).P | !P | P|Q | 0 |
Stop. Free names FN (P), bound names BN (P), and α-equivalence =α in ΠStop

are as usual in the π-calculus. A process P is closed if FN (P) = ∅. Let Πc
Stop

denote the closed processes in ΠStop.

We briefly explain the language constructs. Name restriction νx.P restricts the
scope of name x to process P , P|Q is the parallel composition of P and Q,
the process xy.P waits on channel x to output y over channel x and becoming
P thereafter, the process x(y).P waits on channel x to receive input, and after
receiving the input z, the process turns into P [z/y] (where P [z/y] is the substi-
tution of all free occurrences of name y by name z in process P), the process
!P denotes the replication of process P , i.e. it behaves like an infinite parallel
combination of process P with itself, the process 0 is the silent process that does
nothing, and Stop is a process constant that signals successful termination. We
sometimes write x(y) instead of x(y).0 as well as xy instead of xy.0.

Definition 2.2. The only reduction rule of the ΠStop-calculus is the so-called

interaction
ia−→ which is defined as x(y).P|xz.Q

ia−→ P [z/y]|Q.

Definition 2.3. Let P,Q,R be processes and x, y channel names. Structural
congruence ≡ is the least congruence satisfying:

P ≡ Q, if P =α Q
P|(Q|R) ≡ (P|Q)|R
νx.(P|Q) ≡ P|νx.Q, if x /∈ FN (P)

P|0 ≡ P
νx.0 ≡ 0
P|Q ≡ Q|P

νx.Stop ≡ Stop

νx, y.P ≡ νy, x.P
!P ≡ P|!P

Remark 2.4. We did not include “new” laws for structural congruences on the
constant Stop, like Stop|Stop equals Stop, or even Stop|P equals Stop. We
did not want to include them, since this would require to develop a lot of theory

6 M. Schmidt-Schauß and D. Sabel

known from the π-calculus without Stop again for the calculus with Stop. Our
view is that Stop is a mechanism to have an easy notion for successful termina-
tion, that can be easily replaced by other similar notions (e.g. observing an open
input or output as in barbed testing). However, it is easy to prove that those
mentioned equations hold on the semantic level, e.g. the contextual equivalence
Stop|P ∼c Stop holds (where ∼c is defined below in Definition 2.10).

As example, consider the communication that sends name y over channel x
and then sends u over channel y:

(x(z).zu.0|xy.y(x).0)
ia−→ (zu.0[y/z]|y(x).0) ≡ (yu.0|y(x).0)

ia−→ (0|0) ≡ 0

Definition 2.5. A process context C ∈ C is a process that has a hole [·] at one
process position. They are defined by the grammar

C ∈ C := [·] | x̄(y).C | x(y).C | C|P | P|C | !C | νx.C, with x, y ∈ N

With C[P] we denote the substitution of the hole in C by P . Reduction contexts
are defined as D ∈ PCtxtπ ::= [·] | D|P | P|D | νx.D.

Definition 2.6. A standard reduction
sr−→ is the application of

ia−→ within a
reduction context (modulo structural congruence):

P ≡ D[P ′], P ′
ia−→ Q′,D[Q′] ≡ Q, and D ∈ PCtxt

P
sr−→ Q

Let
sr,n−−→ denote n standard reductions and

sr,∗−−→ denotes the reflexive-transitive
closure of

sr−→.

Definition 2.7. A process P ∈ ΠStop is successful, if P ≡ D[Stop] for some
D ∈ PCtxtπ.

A property of interest is whether standard reductions successfully terminate
or not. Since reduction is nondeterministic, we define observations which test
the existence of a successful sequence (may-convergence), and which test all
reduction possibilities (should-convergence):

Definition 2.8. Let P be a ΠStop-process. We say P is may-convergent (written

P↓), iff there is a successful process P ′ with P
sr,∗−−→ P ′. We say P is should-

convergent (written P⇓), iff, for all P ′: P
sr,∗−−→ P ′ implies P ′↓. If P is not

may-convergent, then P is must-divergent (written P⇑). If P is not should-
convergent, then we say it is may-divergent (written P↑).

Example 2.9. The process P := νx, y.(x(z).0 | xy.Stop)) is may-convergent (P↓)
and should-convergent (P⇓), since P

sr−→ 0 | Stop is the only standard reduc-
tion sequence for P . The process P ′ := νx, y.(x(z).0 | xy.0) deterministically

reduces to the silent process (i.e. P ′
sr−→ 0), hence it is may-divergent (P ′↑) and

Embedding the Pi-Calculus into CH 7

even must-divergent (P ′⇑). The process P ′′ := νx, y.(xy.0 | x(z).Stop | x(z).0)
shows that may-convergence and should-convergence are different. There are two
standard-reduction possibilities for P ′′: we have P ′′

sr−→ νx, y.(Stop | x(z).0) and

P ′′
sr−→ νx, y.x(z).Stop, where the first result is successful, and the second result

is not successful. Hence, P ′′ is may-convergent but not should-convergent. It is
also may-divergent, but not must-divergent.

Note that should-convergence implies may-convergence, and that must-divergence
implies may-divergence.

Definition 2.10. For P,Q ∈ ΠStop and observation ξ ∈ {↓,⇓, ↑,⇑}, we define
P ≤ξ Q iff Pξ =⇒ Qξ. The ξ-contextual preorders and ξ-contextual equiva-
lences are defined as

P ≤c,ξ Q iff ∀C ∈ C : C[P] ≤ξ C[Q] and P ∼c,ξ Q iff P ≤c,ξ Q ∧Q ≤c,ξ P

Contextual equivalence of ΠStop-processes is defined as

P ∼c Q iff P ∼c,↓ Q ∧ P ∼c,⇓ Q.

Inspection of the reduction contexts and the
ia−→-reduction shows:

Lemma 2.11. Let P be a ΠStop-process s.t. FN (P) ⊆ {x1, . . . , xn}.

1. If P
sr,∗−−→ P ′ then νx1, . . . , νxn.P

sr,∗−−→ νx1, . . . , xn.P
′.

2. If νx1, . . . , νxn.P
sr,∗−−→ P ′ then P ′ ≡ νx1, . . . , xn.P ′′ and P

sr,∗−−→ P ′′

Lemma 2.12. Let ξ ∈ {↓, ↑,⇓,⇑}, P,Q be ΠStop-processes. Then P ≤c,ξ Q if,
and only if ∀C ∈ C such that C[P] and C[Q] are closed: C[P] ≤ξ C[Q].

Proof. One direction is trivial. For the other direction, we first consider ξ = ↓.
Assume that ∀C ∈ C such that C[P] and C[Q] are closed: C[P] ≤↓ C[Q].
Let C be an arbitrary context such that C[P]↓ and let FN (C[P]|C[Q]) =
{x1, . . . , xn}. Lemma 2.11 shows νx1, . . . , xn.C[P]↓. The precondition shows
νx1, . . . , νxn.C[Q]↓. Lemma 2.11 shows C[Q]↓.

The case ξ = ⇑ holds, since ⇑ = ¬↓: If ∀C ∈ C such that C[P] and C[Q] are
closed: C[P] ≤⇑ C[Q]. then this shows C[Q] ≤c,↓ C[P] which is equivalent to
C[P] ≤c,⇑ C[Q].

For ξ = ↑, assume that ∀C ∈ C such that C[P] and C[Q] are closed: C[P] ≤↑
C[Q]. Let C be an arbitrary context such that C[P] ↑ and let FN (C[P]|C[Q]) =
{x1, . . . , xn}. Lemma 2.11 and since adding or removing ν-binders does not
change success nor must-divergence we have νx1, . . . , xn.C[P] ↑. Now the precon-
dition shows νx1, . . . , νxn.C[Q] ↑, and Lemma 2.11 and since adding or removing
ν-binders does not change success nor must-divergence shows C[Q] ↑. Finally,
the case ξ = ⇓ follows by symmetry and since P ↑ ⇐⇒ ¬(P ⇓).

Since applying structural congruence is highly nondeterministic, and in or-
der to facilitate reasoning on standard reduction sequences, we define a more
restrictive use of the congruence laws which is still nondeterministic, but only
applies the laws on the surface of the process.

8 M. Schmidt-Schauß and D. Sabel

Definition 2.13. Let
dsc−−→ be the union of the following rules, where D ∈ PCtxtπ:

(assocl) D[P|(Q|R)]→ D[(P|Q)|R] (assocr) D[(P|Q)|R]→ D[P|(Q|R)]

(commute) D[P|Q]→ D[Q|P] (replunfold) D[!P]→ D[P|!P]

(nuup1) D[(νz.P)|Q]→ D[νz.(P|Q)], (nuup2) D[νx.νz.P]→ D[νz.νx.P],
if z does not occur free in Q if x 6= z

Let
dia−−→ be the closure of

ia−→ by reduction contexts PCtxtπ and let
dsr−−→ be defined

as the composition
dsc,∗−−−→ · dia−−→ · dsc,∗−−−→.

We omit the proof of the following equivalences, but it can be constructed
analogous to the proof given in [20] for barbed may- and should-testing. The the-

orem allows us to restrict standard reduction to
dsr−−→-reduction when reasoning

on reduction sequences that witness may-convergence or may-divergence, resp.

Theorem 2.14. For all processes P ∈ ΠStop the following holds:

1. P↓ iff P
dsr,∗−−−→ D[Stop]. 2. P↑ iff ∃P ′ such that P

dsr,∗−−−→ P ′ and P ′⇑.

3 The Process Calculus CH

We introduce the calculus CH (which is a variant of the calculus CHF in [22,23])
which models a core language of Concurrent Haskell [16]. We assume a parti-
tioned set of data constructors c where each family represents a type T . The
data constructors of type T are cT,1, . . . , cT,|T | where each cT,i has an arity
ar(cT,i) ≥ 0. We assume that there is a type () with data constructor (), a type
Bool with constructors True, False, a type List with constructors Nil and :

(written infix as in Haskell), and a type Pair with a constructor (,) written as
(a, b). The syntax of the calculus CH has processes P ∈ ProcCH on the top-
layer which may have expressions e ∈ ExprCH as subterms. The syntax of both
is shown in Fig. 1 where u,w, x, y, z denote variables from a countably-infinite
set of variables Var. As in the ΠStop-calculus, parallel processes are formed by
parallel composition “|”. The ν-binder restricts the scope of a variable. A con-
current thread⇐ e evaluates the expression e. In a process there is (at most one)

unique distinguished thread, called the main thread written as
main⇐== e. MVars are

mutable variables which are empty or filled. A thread blocks if it wants to fill a
filled MVar xm e or empty an empty MVar xm−. The variable x is called the
name of the MVar. Bindings x = e model the global heap, where x is called a
binding variable. If variable x is a name of an MVar or a binding variable, then
x is called an introduced variable. An introduced variable is visible to the whole
process unless its scope is restricted by a ν-binder, i.e. in Q|νx.P the scope of
introduced variable x is process P . A process is well-formed, if all introduced

variables are pairwise distinct and there exists at most one main thread
main⇐== e.

Expressions ExprCH consist of functional expressions and monadic expres-
sions MExprCH that model IO-operations. Functional expressions are variables,

Embedding the Pi-Calculus into CH 9

P ∈ ProcCH ::= (P1|P2) | ⇐ e | νx.P | xm e | xm− | x = e

e ∈ ExprCH ::=x | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)
| letrec x1=e1, . . . , xn=en in e | m |

| caseT e of (cT,1 x1 . . . xar(cT,1) -> e1) . . . (cT,|T | x1 . . . xar(cT,|T |) -> e|T |)

m ∈ MExprCH ::= return e | e >>= e′ | forkIO e | takeMVar e | newMVar e | putMVar e e′

t ∈ TypCH ::= IO t | (T t1 . . . tn) | MVar t | t1 → t2

Fig. 1. Syntax of expressions, processes, and types of CH

P1|P2≡P2|P1

(P1|P2)|P3≡P1|(P2|P3)

(νx.P1)|P2 ≡ νx.(P1|P2),x6∈FV (P2)

νx1.νx2.P ≡ νx2.νx1.P
P1≡P2 if P1 =α P2

Fig. 2. Structural congruence of CH

D ∈ PCtxtCH ::= [·] | D|P | P|D | νx.D
M ∈ MCtxtCH ::= [·] | M >>= e

F ∈ FCtxtCH ::=E | (takeMVarE) | (putMVarE e)
E ∈ ECtxtCH ::= [·] | (E e) | (seqE e)

| (caseE of alts)

Fig. 3. Several context classes

Monadic Computations:

(lunit) ⇐M[return e1 >>= e2]
sr−→⇐M[e2 e1]

(tmvar) ⇐M[takeMVar x]|xm e
sr−→⇐M[return e]|xm−

(pmvar) ⇐M[putMVar x e]|xm− sr−→⇐M[return ()]|xm e

(nmvar) ⇐M[newMVar e]
sr−→ νx.(⇐M[return x]|xm e)

(fork) ⇐M[forkIO e]
sr−→⇐M[return ()]|⇐ e

Functional Evaluation:

(cpce) ⇐M[F[x]]|x = e
sr−→⇐M[F[e]]|x = e

(mkbinds) ⇐M[F[letrecx1=e1, . . . , xn=en in e]]
sr−→ νx1 . . . xn.(⇐M[F[e]]|x1=e1|. . .|xn=en)

(beta) ⇐M[F[((λx.e1) e2)]]
sr−→⇐M[F[e1[e2/x]]]

(case) ⇐M[F[caseT (c e1 . . . en) of . . . (c y1 . . . yn -> e) . . .]]
sr−→⇐M[F[e[e1/y1, . . . , en/yn]]]

(seq) ⇐M[F[(seq v e)]]
sr−→⇐M[F[e]] where v is a functional value

Closure : If P1 ≡ D[P ′1], P2 ≡ D[P ′2], and P ′1
sr−→ P ′2 then P1

sr−→ P2.

Capture avoidance: We assume capture avoiding reduction for all reduction rules.

Fig. 4. Standard reduction rules of CH (call-by-name-version)

10 M. Schmidt-Schauß and D. Sabel

abstractions λx.e, applications (e1 e2), seq-expressions (seq e1 e2), construc-
tor applications (c e1 . . . ear(c)), letrec-expressions (letrec x1 = e1, . . . , xn =
en in e), and caseT -expressions for every type T . We abbreviate case-expressions
as caseT e of alts where alts are the case-alternatives. The case-alternatives
have exactly one alternative (cT,i x1 . . . xar(cT,i) -> ei) for every constructor cT,i
of type T , where x1, . . . , xar(cT,i) (occurring in the pattern cT,i x1 . . . xar(cT,i)) are
pairwise distinct variables that become bound with scope ei. We omit the type
index T in caseT if it is clear from the context. In (letrec x1 = e1, . . . , xn = en
in e) the variables x1, . . . , xn are pairwise distinct and the bindings xi = ei are
recursive, i.e. the scope of xi is e1, . . . , en and e. Monadic operators newMVar,
takeMVar, and putMVar are used to create, to empty and to fill MVars, the
“bind”-operator >>= implements the sequential composition of IO-operations,
the forkIO-operator performs thread creation, and return lifts expressions to
monadic expressions.

Functional values are abstractions and constructor applications. If a monadic
expression is of the form (newMVar e), (takeMVar e), (return e), (e1 >>= e2),
(forkIO e), or (putMVar e1 e2), then it is a monadic value. A value is either a
functional or a monadic value.

Abstractions, letrec-expressions, case-alternatives, and νx.P introduce vari-
able binders and thus this induces free and bound variables, α-renaming, and
α-equivalence =α. Let FV (P) (FV (e), resp.) be the free variables of process P
(expression e, resp.). We assume the distinct variable convention to hold: free
variables are distinct from bound variables, and bound variables are pairwise
distinct. We assume that reductions perform α-renaming to obey this conven-
tion. Structural congruence ≡ of CH -processes is the least congruence satisfying
the laws in Fig. 2. It allows to treat parallel composition as an associative-
commutative operator, to shift ν-binders to the top-level of processes and to
α-rename processes.

We assume that expressions and processes are well-typed according to a
standard monomorphic type system: Since the typing rules are standard, we
omit them, but explain the syntax of types (see Fig. 1): (IO t) stands for a
monadic action with return type t, (MVar t) stands for an MVar with content
type t, and t1 → t2 is a function type. We treat constructors like overloaded
constants to use them in a polymorphic way.

We introduce a call-by-name small-step reduction for CH . This operational
semantics can be shown to be equivalent to (a more realistic) call-by-need se-
mantics. The proof is a copy of the proof given in [22] for the calculus CHF .
However, the equivalence of the reduction strategies is not important or needed
for the current paper. That is why we do not include it.

A context is a process or an expression with a (typed) hole [·]. We introduce
some classes of contexts in Fig. 3. On the process level there are process contexts
PCtxtCH , on expressions first monadic contexts MCtxtCH are used to find the
next to-be-evaluated monadic action in a sequence of actions. For the evaluation
of (purely functional) expressions, usual (call-by-name) expression evaluation
contexts E ∈ ECtxtCH are used, and to enforce the evaluation of the (first)

Embedding the Pi-Calculus into CH 11

argument of the monadic operators takeMVar and putMVar the class of forcing
contexts F ∈ FCtxtCH is used.

Definition 3.1. The standard reduction
sr−→ is defined by the rules and the clo-

sure in Fig. 4. We permit standard reduction only for well-formed processes which
are not successful.

Functional evaluation includes β-reduction (beta), rule (cpce) for copying shared
bindings into needed positions, rules (case) and (seq) to evaluate case- and
seq-expressions, and rule (mkbinds) to move letrec-bindings into the global
set of shared bindings. For monadic computations, rule (lunit) implements the
monadic evaluation by applying the first monad law. Rules (nmvar), (tmvar),
and (pmvar) handle the MVar creation and access. A takeMVar-operation can
only be performed on a filled MVar, and a putMVar-operation needs an empty
MVar. Rule (fork) spawns a new concurrent thread. A concurrent thread finishes
its computation if it is of the form ⇐ return e (where e is of type ()).

A CH -process P is successful if P ≡ νx1. . . . νxn.(
main⇐== return e|P ′) and P is

well-formed. These are the desired results of standard reduction sequences. The
successful processes capture the behavior that termination of the main-thread
implies termination of the whole program.

Definition 3.2. Let P be a CH -process. Process P may-converges (written as

P↓), iff P is well-formed and ∃P ′ : P
sr,∗−−→ P ′ ∧ P ′ successful. If P↓ does not

hold, then P must-diverges written as P⇑. Process P should-converges (written

as P⇓), iff P is well-formed and ∀P ′ : P
sr,∗−−→ P ′ =⇒ P ′↓. If P is not should-

convergent, then we say P may-diverges written as P↑.

Note that a process P is may-divergent iff there is a finite reduction sequence

P
sr,∗−−→ P ′ such that P ′⇑. Definition 3.2 implies that non-well-formed processes

are always must-divergent, since they are irreducible and never successful.

Definition 3.3. Contextual approximation ≤c and contextual equivalence ∼c on
CH -processes are defined as ≤c := ≤c,↓ ∩ ≤c,⇓ and ∼c := ≤c ∩ ≥c where

– P1 ≤c,↓ P2 iff ∀D ∈ PCtxtCH : D[P1]↓ =⇒ D[P2]↓
– P1 ≤c,⇓ P2 iff ∀D ∈ PCtxtCH : D[P1]⇓ =⇒ D[P2]⇓

For CH -expressions, let e1 ≤c e2 iff for all process-contexts C with a hole at
expression position: C[e1] ≤c C[e2] and e1 ∼c e2 iff e1 ≤c e2 ∧ e2 ≤c e1.

The following equivalence will help to prove properties of our translation.

Lemma 3.4. The relations in Definition 3.3 are unchanged, if we add a closed-
ness restriction as follows. Let ξ ∈ {↓,⇓}, then P1 ≤c,ξ P2 iff ∀D ∈ PCtxtCH

such that D[P1],D[P2] are closed: D[P1]ξ =⇒ D[P2]ξ.

Proof. One direction is obvious. For the other direction, let ξ ∈ {↓,⇓} and
assume that for all D such that D[P1],D[P2] are closed: D[P1]ξ =⇒ D[P2]ξ. As-
sume that D[P1]ξ and FV (D[P1])∪ FV (D[P2]) = {x1, . . . , xn}. Since reductions

12 M. Schmidt-Schauß and D. Sabel

(gc) νx1, . . . , xn.(P|Comp(x1)|. . .|Comp(xn))→ P,
if ∀1 ≤ i ≤ n : xi /∈ FV (P) and Comp(xi) is xi = ei, xim ei, or xim−

(dtmvar) νx.D[⇐ M[takeMVar x]|xm e]→ νx.D[⇐ M[return e]|xm−],

if ∀D′ ∈ PCtxtCH and sr-reductions starting with D′[νx.(D[⇐ M[takeMVar x]|xm e])]
the first execution of (takeMVar x) is in the shown thread.

(dpmvar) νx.D[⇐ M[putMVar x e]|xm−]→ νx.D[⇐ M[return ()]|xm e],
if ∀D′ ∈ PCtxtCH and sr-reductions starting with D′[νx.(D[⇐ M[putMVar x e]|xm−])]
the first execution of (putMVar x e′) for any e′ is in the shown thread.

Fig. 5. Garbage Collection and Deterministic Take und Put

are applicable with or without ν-binders on the top, we have νx1, . . . , xn.D[P1]ξ
and by the precondition νx1, . . . , xn.D[P2]ξ, since νx1, . . . , xn.D[·] is a PCtxt-
context. From νx1, . . . , xn.D[P2]ξ also D[P2]ξ follows, since reductions are appli-
cable with or without ν-binders on the top. This shows P1 ≤c,ξ P2. ut

Proposition 3.5. Let P1, P2 be well-formed and P1 ≡ P2. Then P1 ∼c P2.

A program transformation η ⊆ (ProcCH ×ProcCH) is correct iff P1 η P2 =⇒
P1 ∼c P2. In Fig. 5 we define garbage collection (gc) and deterministic variants
of (tmvar) and (pmvar).

The following proposition holds, since correctness of transformations can be
transferred from the calculus CHF [22] by an embedding ι : CH → CHF , such
that ι(P) ∼c,CHF ι(P ′) implies P ∼c,CH P ′. See Appendix C.3 for the full proof.

Proposition 3.6. The rules (lunit), (nmvar), (fork), (cpce), (mkbinds), (beta),
(case), (seq), (gc), (dtmvar), and (dpmvar) are correct program transformations.

4 The Translation τ0 with Private Names

We present a translation that uses private names (i.e. new MVars) which uses
similar ideas as the translation of the pi-calculus into an asynchronous pi-calculus
in [3], which was an early example of using private names within a translation.
Later in Sect. 5, we discuss translations and investigations on those translations
which do not use private names.

We define a translation τ0 mapping ΠStop-processes to CH -processes. It uses
the data type Channel, defined in Haskell-syntax as

data Channel = Channel (MVar (Channel, (MVar ()))).

The type Channel is a recursive data type, which can be initialized with a ⊥-
expression. In the following, we abbreviate the expression (case e of (Channelm -> m))
as (unchan e) and we use a >> b as abbreviation for a >>= (λ . b) and also use

Embedding the Pi-Calculus into CH 13

τ0(P) =
main⇐==do {stop ← newMVar (); forkIO τ(P); putMVar stop ()}

τ(xy.P) =do {checkx← newMVar (); putMVar (unchan x) (y, checkx);
putMVar checkx (); τ(P)}

τ(x(y).P) =do {(y, checkx)← takeMVar (unchan x); takeMVar checkx; τ(P)}}
τ(P|Q) =do {forkIO τ(Q); τ(P)}
τ(νx.P) =do {chanx ← newEmptyMVar; letrec x = Channel chanx in τ(P)}
τ(0) = return ()
τ(Stop) = takeMVar stop
τ(!P) = letrec f = do {forkIO τ(P); f} in f

Fig. 6. Translations τ0 and τ

Haskell’s do-notation as abbreviation, where

do {x← e1; e2} = e1 >>= λx.(do {e2})
do {(x, y)← e1; e2} = e1 >>= λz.casePair z of (x, y) -> (do {e2})
do {e1; e2} = e1 >> (do {e2}),
do {e} = e

As a further abbreviation, we write y ← newEmptyMVar inside a do-block
to abbreviate the sequence y ← newMVar ⊥; takeMVar y, where ⊥ is a must-
divergent expression, for instance letrec x = x in x.

The translation from the ΠStop-calculus is done by using one MVar per chan-
nel which contains a pair consisting of the (translated) name of the channel and
a further MVar used for the synchronization. This MVar is private, such that
only the sender and the receiver know it. Privacy is established by the sender:
it creates a new MVar for every send operation.

send

check

Channel xsender

y

receiver

y

Message y is sent over channel x by sending a pair (y,check) where check is a
MVar containing (). The receiver waits (black square) for a message (y, check) by
the sender. After sending the message, the sender waits until check is emptied,
and the receiver acknowledges by emptying the MVar check.

Definition 4.1. We define the translation τ0 and its inner translation τ from
the ΠStop-calculus into the CH -calculus in Fig. 6 as follows. For contexts, the
translations are the same where the context hole is treated like a constant and
translated as τ([·]) = [·].

The translation τ0 generates a main-thread and an MVar stop. The main thread
is then waiting for the MVar stop to be emptied. The inner translation τ trans-
lates the constructs and constants of the ΠStop-calculus into CH -expressions.

14 M. Schmidt-Schauß and D. Sabel

Remark 4.2. Except for the main-thread, the translation τ0 generates a valid

Concurrent Haskell-program, i.e. if we write τ0(P) =
main⇐== e as main = e, we can

execute the translation in the Haskell-interpreter.

4.1 Properties of the Translation τ0

In this section we define properties of translations and motivate and present
the plan for proving the results for the translations τ0 and τ , which will be in
Sect. 4.2 (and details also in Appendix A).

For the following definition of translation τ being compositional, adequate,
or fully abstract, we adopt the view of the translation τ to be a translation from
ΠStop into the CH -language with a special initial evaluation context Cτout .

Definition 4.3. The context Cτout for translation τ0 is defined as

Cτout = νf, stop.
main⇐== do {stop ← newMVar (); forkIO [·]; putMVar stop ()}

We define variants of may- and should-convergence of expressions e within Cτout
in CH :

e↓0 iff Cτout [e]↓ and e⇓0 iff Cτout [e]⇓.

We define the relations ≤c,τ0 and ∼c,τ0 on CH -expressions:

e1 ≤c,τ0 e2 iff ∀C : if FV (C[e1], C[e2]) ⊆ {stop}, then
C[e1]↓0 =⇒ C[e2]↓0 and C[e1]⇓0 =⇒ C[e2]⇓0

e1 ∼c,τ0 e2 iff e1 ≤c,τ0 e2 and e1 ≤c,τ0 e2.

Note that ≤c,CH is a subset of ≤c,τ0 , and hence also ∼c,CH is a subset of
∼c,τ0 and thus we often can use the more general relations for reasoning and in
particular can reuse results from CH .

Definition 4.4. Let ΠStop,C be the contexts of ΠStop. We define the following
properties for τ0 and τ (see [27,28]). For open processes P, P ′, we say that trans-
lation τ is

compositional upto {↓0,⇓0} iff for all P ∈ ΠStop, all C ∈ ΠStop,C , and all
ξ ∈ {↓0,⇓0} : if FV (C[P]) ⊆ {stop}, then τ(C[P])ξ ⇐⇒ τ(C)[τ(P)]ξ,

adequate iff for all processes P, P ′ ∈ ΠStop: τ(P) ≤c,τ0 τ(P ′) =⇒ P ≤c P ′,
and

fully abstract iff for all processes P, P ′ ∈ ΠStop: P ≤c P ′ ⇐⇒ τ(P) ≤c,τ0
τ(P ′).

Convergence equivalence of the translation τ0 for may- and should-convergence
holds. For readability and space reasons the proofs are omitted, but given in a
technical appendix. In Appendix A we thus show the following two propositions:

Embedding the Pi-Calculus into CH 15

Proposition 4.5. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent
for ↓, i.e. P↓ is equivalent to τ0(P)↓. This also implies that P⇑ is equivalent to
τ(P)⇑.

Proposition 4.6. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent
for ⇓, i.e. P⇓ is equivalent to τ0(P)⇓.

We informally describe the main steps of the proof. Both propositions have
an “if” and an “only-if” part, i.e. to prove them, one has to show four claims:

1. τ0 preserves may-convergence, i.e. for closed P ∈ ΠStop: P↓ =⇒ τ0(P)↓.
2. τ0 reflects may-convergence, i.e. for closed P ∈ ΠStop: τ0(P)↓ =⇒ P↓.
3. τ0 preserves must-convergence, i.e. for closed P ∈ ΠStop: P⇓ =⇒ τ0(P)⇓.
4. τ0 reflects must-convergence, i.e. for closed P ∈ ΠStop: τ0(P)⇓ =⇒ P⇓.

Actually, for the latter two parts, we show reflection and preservation of
may-divergence, i.e.:

3’. τ0 reflects may-divergence, i.e. for closed P ∈ ΠStop: τ0(P)↑ =⇒ P↑.
4’. τ0 preserves may-divergence, i.e. for closed P ∈ ΠStop: P↑ =⇒ τ0(P)↑.

Note that claim 3 is equivalent to 3’ and claim 4 is equivalent to claim 4’.
The proof technique for showing parts 1,2,3’,4’ is to investigate properties

of reduction sequences (those that end in a successful process and those that
end in a must-divergent process) and to (inductively) apply appropriate (and
permitted) rearrangements of reduction sequences and correct program trans-
formations, i.e. those listed in Proposition 3.6.

For the given reduction sequences in the ΠStop-calculus (giving evidence that
P↓, or P↑ resp. holds) for proving part 1 and 4’, we assume that they are given as
steps of dsr-reductions (Definition 2.13). This simplifies the proof and is correct
due to Theorem 2.14.

A further technical detail is that we use another translation σ (and σ0) which
translates several π-process components directly into CH -process components
(for instance, parallel composition is directly translated into parallel composi-
tion), instead of translating them into code which generates the components (as
τ does). An intermediate step in the proof is to show equivalence of σ and τ
w.r.t. contextual equivalence.

For proving the reflection parts, i.e. part 2 and part 3, the following diagrams
sketch the overall idea of the induction proof, which mainly is on the number n
of given reductions.

For part 2 the diagram is

P

sr,∗
��

σ0 // σ0(P)

(sr∪∼c),∗ss
sr,n
��

P1
σ0 // σ0(P1)(succ.) Q1(succ.)

For part 3, the diagram is

16 M. Schmidt-Schauß and D. Sabel

P

sr,∗
��

σ0 // σ0(P)

(sr∪∼c),∗tt
sr,n
��

P1⇑
σ0 // σ0(P1)⇑ Q1⇑

The difference of both parts is the induction base: For part 2, the processes
are successful, while for part 3, the processes have to be must-divergent. Both
diagrams also illustrate the use of correct program transformations to obtain a
“reordered” sequence of reductions and transformation for σ0(P) such that it
can be back-translated into a sequence of sr-reductions in the ΠStop-calculus.

4.2 Main Results for the Translation τ0

We show the main result that the translation is adequate (Theorem 4.10). The
interpretation of this result is that the pi-calculus with the concurrent semantics
is semantically represented within CH . This result is on a more abstract level,
since it is based on the property whether the programs (in all contexts) produce
values or may run into failure, or get stuck; or not. Since the pi-calculus does
not have a notion of values, like numbers or lists, also the translated processes
cannot be compared w.r.t. values other than a single form of value.

The translation τ0 is not fully abstract (Theorem 4.11), which is rather nat-
ural, since it only means that it is mapped into a subset of the expressions and
that this is a proper subset w.r.t. the semantics.

First we show a simple form of a context lemma:

Lemma 4.7. Let e, e′ be CH -expressions, where the only free variable in e, e′

is stop. Then Cτout [e] ≤c Cτout [e′] iff Cτout [e]↓ =⇒ Cτout [e
′]↓ and Cτout [e]⇓ =⇒

Cτout [e
′]⇓.

Proof. One direction is obvious by using the empty context in the ≤c-definition.
For the other direction, assume Cτout [e]↓ =⇒ Cτout [e

′]↓ and Cτout [e]⇓ =⇒
Cτout [e

′]⇓. There are two cases:

1. Let D be a process-context such that D[Cτout [e]] and D[Cτout [e
′]] are closed,

and D[Cτout [e]]↓. Then we have to show that D[Cτout [e
′]]↓. Due to closedness,

D[Cτout [e]] ≡ PD|C
τ
out [e] and D[Cτout [e

′]] ≡ PD|C
τ
out [e

′] for some closed
CH -process PD. Due to closedness, there is no interference between PD
and Cτout [e

′], or Cτout [e], resp. Hence Cτout [e]↓ =⇒ Cτout [e
′]↓, and thus

D[Cτout [e
′]]↓.

2. Assume that D[Cτout [e
′]]↑. We have to show that D[Cτout [e]]↑ holds. Due to

closedness, we have D[Cτout [e]] ≡ PD|C
τ
out [e] and D[Cτout [e

′]] ≡ PD|C
τ
out [Q

′]
and the same arguments as in item 1 show the claim.

Proposition 4.8. The translation τ is compositional upto {↓0,⇓0}.

Proof. This follows by checking whether the single cases of the translation τ are
independent of the surrounding context, and translate every level independently.

Embedding the Pi-Calculus into CH 17

Theorem 4.9. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent for
↓ and ⇓, i.e. P↓ is equivalent to τ0(P)↓. and P⇓ is equivalent to τ0(P)⇓. This
also shows convergence-equivalence of τ w.r.t. ↓0,⇓0, i.e. For closed P ∈ ΠStop :
P↓ ⇐⇒ τ(P)↓0 and P⇓ ⇐⇒ τ(P)⇓0.

Proof. This follows from Proposition 4.5 for may-convergence and from Propo-
sition 4.6 for should-convergence.

We show in the following that the translation τ transports ΠStop-processes
into CH , such that adequacy holds. This is a rather strong statement: It shows
that the translated processes also mimic the behavior of the original ΠStop-
processes when plugged into contexts in a correct way. If the translated open
processes cannot be distinguished by ≤c,τ0 , i.e. there is no test that detects
a difference where may and should-convergence are the observables, then the
original processes are equivalent in the pi-calculus.

However, this open translation is not fully abstract, which means that there
are CH -contexts that can see and exploit too much of the details of the trans-
lation.

We state and prove the main result of our paper.

Main Theorem 4.10 The translation τ is adequate.

Proof. We prove the adequacy-property for the preorder ≤c,τ0 . The property for
the contextual equivalence ∼c,τ0 and ∼c then follows by symmetry. Let P, P ′ be
ΠStop-processes, such that τ(P) ≤c,τ0 τ(P ′). We show that P ≤c P ′. Now we use
the equivalence in Lemma 3.4 and restrict considerations to closed C[P], C[P ′]
below: Let C be a context in ΠStop, such that C[P], C[P ′] are closed and C[P]↓.
Then τ0(C[P]) = Cτout [τ(C[P])]. Closed convergence equivalence shows that
Cτout [τ(C[P])]↓, which is the same as Cτout [τ(C)[τ(P)]]↓ by Proposition 4.8. The
assumption τ(P) ≤c,τ0 τ(P ′) implies Cτout [τ(C)[τ(P ′)]]↓, which again is the same
as Cτout [τ(C[P ′])]↓ using Proposition 4.8. Again, closed convergence equivalence
implies C[P ′]↓. The same arguments holds for ⇓ instead of ↓. The computation
can be done for every context C that satisfies the conditions.
In summary, we obtain P ≤c P ′.

Theorem 4.11. The translation τ is not fully abstract.

Proof. This holds, since an open translation can be closed in CH by a context
without initializing the ν-bound MVars. For P = x̄(y).Stop|x(z).Stop, we have
P ∼c Stop in the π-calculus (see Example D.2), but τ(P) 6∼c,0 τ(Stop) in CH :
let D be a process context that does not initialize the MVars for x (as the
translation does). Then D[τ(P)]⇑0, but D[τ(Stop)]⇓0.

However, restricted to closed processes, full abstraction holds:

Theorem 4.12. For closed P1, P2 ∈ ΠStop, the equivalence P1 ≤c P2 ⇐⇒
τ(P1) ≤c,τ0 τ(P2) holds.

Proof. For closed P, P ′, the implication P ≤c P ′ =⇒ τ(P1) ≤c,τ0 τ(P2) follows
from Lemma 4.7, since τ0 produces closed processes that are in context Cτout .
The other direction follows from Main Theorem 4.10.

18 M. Schmidt-Schauß and D. Sabel

5 Translations with Global Names

In this section, we discuss translations that do not use private names, but only
global names. We report on an automated tool that we implemented and that
searches for those translations trying to refute their correctness. We only con-
sider the aspect of how to encode the synchronous message passing of the π-
calculus, the other aspects (encoding parallel composition, replication and the
Stop-constant) are not discussed, where we assume that they are encoded as
before. We also keep the main idea to translate a channel of the π-calculus into
CH : we represent a π-channel in CH as an object of a user-defined data type
Channel that consists of

1. an MVar for transferring the message (which again is a Channel),
2. additional MVars for implementing a correct synchronization mechanism.

In the translation τ in the previous section, we used a private MVar (which was
created by the sender for every communication action and transferred together
with the message). In this section we investigate translations where this mecha-
nism is replaced by one or several public MVars, which are created once together
with the channel object. To restrict the search space for translations, only the
synchronization mechanism of MVars (by emptying and filling them) is used, but
we forbid to transfer specific data (like numbers etc.). Hence, we restrict these
MVars (which are called check-MVars from now on) to be of type MVar ().

In summary, we now analyze translations of π-calculus channels into a CH -
data type Channel where the data type definition in Haskell is of the form

data Channel = Channel (MVar Channel) (MVar ()) . . . (MVar ())︸ ︷︷ ︸
n times

A channel x of the π-calculus is then represented as a CH -binding

x = Channel content check1 . . . checkn

where content, check1, . . . , checkn are appropriately initialized (i.e. empty) MVars.
The MVars are not private (but public (or global), since all processes which know
the name x have access to the n+ 1 components of the channel.

After fixing this representation of a π-channel in CH , the task is to translate
the input- and output actions x(y), xz as CH -programs such that the interaction
reduction is performed correct and synchronously4.

Let us call the translation of x(y), the receiver program (the receiver, for
short), and the translation of xz the sender program (the sender, for short). To
simplify the analysis, we restrict the allowed operations of the sender and the
receiver, and thus allow only the following operations:

4 We omit the translation of the ν-operator at this moment, but clearly, it has to
construct and initialize the appropriate MVars. In Definition 5.2 the full translation
will be given.

Embedding the Pi-Calculus into CH 19

putS: The sender puts its message into the contents-MVar of the channel. This
operation occurs exactly once in the sender program. We write it as putSx z,
or even more abstractly as putS, if x and z are clear from the context. It rep-
resents the CH -expression case x of (Channel c a1 . . . an -> putMVar c z >> e)
where e is the remaining program of the sender.

takeS The receiver takes the message from the contents-MVar of channel x and
replaces the channel name y by the received name in the subsequent program
(which does not belong the current input-operation). This operation occurs
exactly once in the receive program. We write this as takeSx y, or even more
abstractly as takeS, if x and y are clear from the context.
It represents the CH -expression

case x of (Channel c a1 . . . an -> takeMVar c >>= λy.e)

where e is the remaining program of the receiver.
In do-notation, we also write do {y ← takeSx; e} to abbreviate the above
CH -expression.

putC and takeC: The sender and the receiver may synchronize on a check-MVar
check1, . . . , checkn by either putting () into it or by emptying the MVar.
These operations are written as putCix and takeCix, or even more abstractly
as putCi, takeCi if the name x is clear from the context. We write putC and
takeC if there is only one check-MVar.
Let e be the remaining program of the sender or receiver. Then putCix rep-
resents the CH -program

case x of (Channel c a1 . . . an -> putMVar ai () >> e)

and takeCix represents the CH -program

case x of (Channel c a1 . . . an -> takeMVar ai >> e)

We restrict our search for translations to the case that the sender and the
receiver programs are sequences of the above operations, and that they are in-
dependent of the channel name x. With this restriction we can abstractly write
the translation of the sender and the receiver program as a pair of sequences,
where only putS, takeS, putCi and takeCi operations are used. We make some
more restrictions in the following definition:

Definition 5.1. Let n > 0 be a number of check-MVars. A standard global
synchronized-to-buffer translation (or gstb-translation) is represented as a pair
(Tsend , Treceive) of a send-sequence Tsend and of a receive-sequence Treceive which
both consist of putS, takeS, putCi and takeCi operations, where

– The send-sequence contains putS (exactly once), and the receive-sequence
contains takeS (exactly once),

– For every putCi-action in (Tsend , Treceive), there is also a takeCi-action in
(Tsend , Treceive).

20 M. Schmidt-Schauß and D. Sabel

– We can assume that in the send-sequence the indices i are ascending. I.e. if
putCi or takeCi is before putCj or takeCj, then i < j.

In the following we often say translation instead of gstb-translation, if this is
clear from the context.

Definition 5.2. Let T = (Tsend , Treceive) be a gstb-translation. We write T x,ysend

for the program Tsend instantiated for the output-prefix xy, i.e. the putS-operation
is putSx y, and all other operations are indexed with name x, i.e takeCi becomes
takeCix and putCi becomes putCix. We write T x,yreceive for the program Treceive in-
stantiated for the input-prefix xy, i.e. the takeS-operation is takeSx y, and all
other operations are indexed with name x, i.e takeCi becomes takeCix and putCi

becomes putCix.
The induced translations φ0,T and φT of (Tsend , Treceive) are defined as fol-

lows, where n is the number of check-MVars used by the translation:

φ0,T (P) =
main⇐== do {stop ← newMVar (); forkIO φT (P); putMVar stop ()}

φT (xy.P) = do {T x,ysend ;φT (P)}
φT (x(y).P) = do {T x,yreceive ;φT (P)}
φT (P|Q) = do {forkIO φT (Q);φT (P)}
φT (νx.P) = do {contx ← newEmptyMVar;

checkx 1 ← newEmptyMVar; . . . ; checkxn ← newEmptyMVar;
letrec x = Channel contx checkx 1 . . . checkxn in φT (P)}

φT (0) = return ()
φT (Stop) = takeMVar stop
φT (!P) = letrec f = do {forkIO φT (P); f} in f

Note that the induced translations are defined similar to the translation τ0
and τ , where the differences are the representations of the channel, and thus
the translation of νx, x(y), and xy is changed, while the other cases remain the
same. Especially, it holds that φ0,T (P) = Cτout [φT]. Using the same arguments
as in the proof of Main Theorem 4.10 we can show the following proposition.

Proposition 5.3. If φT is closed convergence equivalent, then φT is adequate
and on closed processes it is fully-abstract.

We also speak of an execution of a translation (Tsend , Treceive) for name x.
Here we mean the simulation of the abstract program, i.e. a program that starts
with empty MVars x, x1, . . . , xn, and is an interleaved sequence of actions from
the send and receive-sequence Tsend and Treceive , respectively.

5.1 Classifying Translations

To speak about the translations we make some more classifications:

Number n of check-MVars We classify the translations by the number of
check-MVars that are present in the Channel-type

Embedding the Pi-Calculus into CH 21

Multiple-Uses We say that a translation allows multiple uses, if the same
check-MVar is used more than once, i.e. the sender and/or receiver may
contain takeCi and putCi more than once for the same i.

Interprocess check restriction We say that a translation has the interprocess
check restriction, if for every i: takeCi and putCi do not occur both in Tsend ,
and also not in Treceive .

We define some properties of gstb-translations:

Definition 5.4. A translation (Tsend , Treceive) according to Definition 5.1 is

– executable, if there is a deadlock free interleaving execution of the parallel
combination of Tsend and Treceive .

– communicating, if Tsend contains at least one takeCi-action.
– overlap-free, if for a fixed name x, starting with empty MVars, every inter-

leaved (concurrent) execution of Tsend and Treceive cannot be disturbed by
starting another Tsend and Treceive, after Tsend and Treceive both performed
(at least) one action.

5.2 Simulating Translations to Refute their Correctness

We implemented a tool to enumerate translations and then to test whether ev-
ery translation preserves and reflects may- and should-convergence. The above
mentioned parallel execution of Tsend and Treceive is not sufficient to refute
most of the translations, since it corresponds to the evaluation of the π-program
νx.(x(y)|xz) (which is must-divergent, since no Stop occurs). Thus our ap-
proach is to apply the translation to a subset of π-process for which we can
decide may- and should-convergence (before and after the translation) in an au-
tomated way. Thus we consider only π-programs of the form (νx1, . . . , xn.P)
where P contains only 0, Stop, parallel composition|, and input- and output-
prefixes. Thus, the programs are replication free and the ν-binders are on the
top, and hence terminate. In the following we omit the ν-binders, but always
mean them to be present.

Our simulation tool5 can execute all possible evaluations of such π-processes
and – since all evaluation paths are of finite length, the tool can check for
may- and should-convergence of the π-program. For the translated program,
we do not generate a full CH -program: We generate a sequence of sequences of
takeSx, putSx, takeC

i
x, putC

i
x z and Stop-operations by applying the translation

to all action prefixes in π-program and by translating Stop into Stop, 0 into an
empty sequence. We get a sequence of sequences, since we have several threads
and each thread is represented by such a sequence. For executing the translated
program we simulate the global store (of MVars) and execute all possible inter-
leavings where we check for may- and should-convergence by looking whether the
Stop eventually occurs at the beginning of the sequence. This quite obviously
simulates the behavior of the real CH -program but in a controllable manner.

5 Available via http://goethe.link/refute-pi.

http://goethe.link/refute-pi

22 M. Schmidt-Schauß and D. Sabel

Now having an encoding of the sender- and the receiver program, we use a
π-calculus process P and

1. Translate it with the encodings in the sequence of sequences consisting of
takeSx, putSx, takeC

i
x, putC

i
x z and Stop-operations.

2. Simulate the execution on all interleavings
3. Test may- and should convergence of the original π-program P as well as

the encoded program (w.r.t. the simulation)
4. Compare the convergence before and after the translation. If there is a dif-

ference in the convergence behavior, then P is a counter-example for the
correctness of the encodings.

5.3 Translations Without Check-MVars

The (trivial) case that there is no check-MVar leads to one possible translation
([putS], [takeS]) which means that xz is translated into putSx y and x(y) is
translated into takeSx y. This translation is not correct, since for instance the π-
process xz.x(y).Stop is neither may- nor should-convergent, but the translation
putSx z; takeSx y; Stop is may- and should-convergent, since the put- and the
take-operation can be done sequentially.

5.4 Translations With Interprocess Check Restriction

We first consider translations with the interprocess check restriction. In this case
the number of different translations is n! ∗ 2n ∗ (n+ 1)2 (where n is the number
of check-MVars), which for n = 1 results in 8, for n = 2 results in 72, and for
n = 3 in 768 translations.

For a single check-MVar all 8 translations are rejected by our simulation,
Table 1 shows the translations and the obtained counter examples.

Remark 5.5. We exhibit an example, why the translation

(Tsend , Treceive) = ([putS, takeC], [takeS, putC])

is not correct. Consider the following ΠStop-process

P = νx, z, w, a.(xz.za.Stop|xw.wa.Stop|x(y).y(w).0)

which is should-convergent, since the two possible reduction sequences starting
with P end in successful processes.

Consider the translated CH -program where we use the commands abbrevi-
ating the concrete CH -programs, and where we assume that the program code
for creating the MVars and the bindings for the Channel-objects are already
executed:

νx = Channel cx chkx|z = Channel cz chkz|w = Channel cw chkw|. . .
|cxm−|chkxm−|czm−|chkzm−|cwm−|chkwm−|. . .
| do{putSx z; takeCx; putSz a; takeCz; . . .}
| do{putSx w; takeCx; putSw a; takeCw; . . .}
| do{y ← takeSx; putCx;w ← takeSy; . . .}

Embedding the Pi-Calculus into CH 23

m
ay

-c
o
n
v

sh
o
u
ld

-c
o
n
v

m
ay

-c
o
n
v

sh
o
u
ld

-c
o
n
v

Translation (Sender,Receiver) Counter-example (π-process) before after

([putC, putS], [takeC, takeS]) xy.x(y).Stop N N Y Y
([putC, putS], [takeS, takeC]) xy.x(y).Stop N N Y Y
([putS, putC], [takeC, takeS]) xy.x(y).Stop N N Y Y
([putS, putC], [takeS, takeC]) xy.x(y).Stop N N Y Y
([takeC, putS], [putC, takeS]) xy.x(z).Stop | x(w) N N Y N
([takeC, putS], [takeS, putC]) xy.Stop | x(y) Y Y N N
([putS, takeC], [putC, takeS]) xy.x(z).Stop | x(w) N N Y N
([putS, takeC], [takeS, putC]) xz.za.Stop | xw.wa.Stop | x(y).y(u) Y Y Y N

Table 1. Translations using one check-MVar and with the interprocess check restriction

This reduces after executing putSx z and y ← takeSx

νx = Channel cx chkx|z = Channel cz chkz|w = Channel cw chkw|. . .
|cxm−|chkxm−|czm−|chkzm−|cwm−|chkwm−|. . .
| do{takeCx; putSz a; takeCz; . . .}
| do{putSx w; takeCx; putSw a; takeCw; . . .}
| do{putCx;w ← takeSz; . . .}

The second and third thread make steps:

νx = Channel cx chkx|z = Channel cz chkz|w = Channel cw chkw|. . .
|cxmw|chkxm ()|czm−|chkzm−|cwm−|chkwm−|. . .
| do{takeCx; putSz a; takeCz; . . .}
| do{takeCx; putSw a; takeCw; . . .}
| do{w ← takeSz; . . .}

The second thread can make an unexpected step:

νx = Channel cx chkx|z = Channel cz chkz|w = Channel cw chkw|. . .
|cxmw|chkxm−|czm−|chkzm−|cwm−|chkwm−|. . .
| do{takeCx; putSz a; takeCz; . . .}
| do{putSw a; takeCw; . . .}
| do{w ← takeSz; . . .}

Now the only possible step is

νx = Channel cx chkx|z = Channel cz chkz|w = Channel cw chkw|. . .
|cxmw|chkxm−|czm−|chkzm−|cwm a|chkwm−|. . .
| do{takeCx; putSz a; takeCz; . . .}
| do{takeCw; . . .}
| do{w ← takeSz; . . .}

and now the process is stuck.

24 M. Schmidt-Schauß and D. Sabel

If we use 2 check-MVars, then there are 72 translations. Again our tool is able
to refute all of them. Compared to Table 1, there are two further π-processes
used, which act as counterexample.

However, one can also use the processes xy.Stop|x(y) and xy.x(z).zq|x(z)|
x(z)|xz|y(u).Stop to refute all 72 translations.

For 3 MVars, there are 768 translations, where 762 are rejected (where the
counter examples are the same as for 2-check-MVars) and 6 potentially correct
translations remain. The six translations are shown in Table 2.

Sender Receiver

Translations without potential overlaps

[putS, putC1, takeC2, putC3] [takeC1, putC2, takeC3, takeS]
[takeC1, putS, takeC2, takeC3] [putC3, putC1, takeS, putC2]
[putC1, putS, takeC2, putC3] [takeS, putC2, takeC3, takeC1]
[putC1, putC2, takeC3, putS] [takeC2, putC3, takeS, takeC1]

Translations with potential overlaps

[takeC1, putS, takeC2, takeC3] [putC1, putC2, takeS, putC3]
[putC1, takeC2, putS, takeC3] [takeC1, putC2, takeS, putC3]

Table 2. Non-rejected translations for 3 check-MVars and interprocess check restriction

Theorem 5.6. There is no valid gstb-translation with the interprocess check
restriction for less than three check-MVars.

Proof. (Sketch) Our simulator refuted all translations for less than three check-
MVars: All 72 possibilities of translations using 2 check-MVars could be re-
futed, where two processes suffice to refute all translation variants: xy.Stop|x(y)
and xy.x(z).zq|x(z)|x(z)|xz|y(u).Stop, where the first process is should-
convergent and the latter is neither may- nor should-convergent.

A reason for the failure of translations with less then three check-MVars may
be the following result:

Theorem 5.7. There is no executable, communicating, and overlap-free gstb-
translation with the interprocess check restriction for n < 3.

Proof. For n = 1 we check the last four translations in Table 1. The first
four are non-communicating. For ([putS, takeC], [takeS, putC]): after executing
putS,takeS we can execute putS again For ([putS, takeC], [putC, takeS]): after
putC, putS, takeC we can execute putC again. For ([takeC, putS], [takeS, putC]):
A deadlock occurs immediately. Thus the translation is not executable. For
([takeC, putS], [putC, takeS]): After executing putC, takeC, we can execute putC
again. For n = 2, we have checked all cases using our simulator, and no exe-
cutable, communicating, and overlap-free translation for n = 2 is found. The
numbers are: 18 translations are ruled out, since these are non-communicating,
21 lead to a deadlock, and 33 may lead to an overlap. This check could also be
done by hand by scanning all 72 translations.

Embedding the Pi-Calculus into CH 25

Proposition 5.8. The first four translations in Table 2 are executable, com-
municating, and overlap-free, whereas the next two translations are executable,
communicating, but are overlapping.

Proof. The executability and overlap-freeness can be easily checked by simulat-
ing the possible executions. In any case, only if all 8 actions are finished, the
next send or receive can start.

For the next two translations the overlap shows up after executing putC1,
takeC1, since we can again execute putC1. ut

In Appendix B.3 we sketch the arguments that the induced translation from
the first gstb-translation from Table 2, i.e. φT1 =

(Tsend , Treceive) = ([putS, putC1, takeC2, putC3], [takeC1, putC2, takeC3, takeS]),

is indeed correct and leaves may- and should convergence invariant. The main
help in reasoning is that there is no unintended interleaving of send and receive
sequences according to Proposition 5.8. Application of Proposition 5.3 shows the
following theorem.

Theorem 5.9. Translation φT1
is adequate and on closed processes it is fully-

abstract.

For 4 MVars there are 9600 translations and our simulation refutes 9299 and
thus there remain 341 candidates for correct translations.

5.5 Dropping the Interprocess Check Restriction

If we drop the interprocess check restriction, but only allow one check-MVar
without reuse, then we get 20 candidates for translations, which are all refuted
by our simulation.

Allowing reuse of the single check-MVar seems not to help to construct a
correct translation: We simulated this for up to 6 uses (which leads to 420420
candidates for a correct translation) – our simulation refutes all of them.

We conjecture that there is no correct translation for one check-MVar where
re-uses are permitted, and where the interprocess check restriction is dropped.

For two MVars and one use but without the interprocess check-MVar there
are 420 translations. Our simulation refutes all but two translations, which are
shown in Table 3. In the first translation the second check-MVar is used as a

Sender Receiver

[putC1, putS, takeC2, takeC1] [takeS, putC2]
[takeC1, putS] [putC2, putC1, takeS, takeC2]

Table 3. Non-refuted translations for two check-MVars, no interprocess check restric-
tion

26 M. Schmidt-Schauß and D. Sabel

mutex for the senders, ensuring that only one sender can operate at a time, while
the second translation does the same on the receiver side.

Proposition 5.10. The translations in Table 3 are executable, communicating,
and overlap-free.

Proof. It is easy to verify that the translations are executable and communicat-
ing. For the first translation, assume that putC1, putS and takeS are performed
in this order (no other order is possible). Then an additional sender cannot exe-
cute its first command before the original sender performs takeC1 and this again
is only possible after the receiver program is finished. An additional receiver can
only be executed after a putS is performed, which cannot be done by the current
sender and receivers.

For the second translation, assume that putC2, putC1 and takeC1 are per-
formed in this order (no other order is possible). An additional receiver can only
start after takeC2 was executed by the original receiver, which can only occur
after the original sender and receiver program are fully evaluated. An additional
sender can only start after putC1 has been executed again, but the current sender
and receiver cannot execute this command.

In the appendix we sketch in Theorem B.4 that the induced translation from
the first gstb-translation, i.e. the translation φT2 with

T2 = ([putC1, putS, takeC2, takeC1], [takeS, putC2])

is (closed) convergence equivalent.
Applying Proposition 5.3 this shows

Theorem 5.11. Translation φT2
is adequate and on closed processes it is fully-

abstract.

We are convinced that the same holds for the second translation. We conclude
the statistics of our search for translations without the interprocess restriction:

– For 3 MVars there are 10080 translations and 9992 are refuted, i.e. 98 trans-
lations are potentially correct. Among the 98 translations, there is the trans-
lation ([putC1, putS, takeC2, takeC1], [putC3, takeS, putC2, takeC3]) which is
quite intuitive: check-MVar 1 is used as a mutex for all senders on the same
channel, check-MVar 3 is used as a mutex for all receivers, and check-MVar
2 is used to acknowledge that the message was received.

– For 4 MVars there are 277200 translations and 273210 are refuted, i.e. 3990
translations are potentially correct.

6 Discussion and Conclusion

We have investigated the problem of translating the π-calculus into the CH -
calculus modeling Concurrent Haskell and proved that there is a correct trans-
lation τ0 from the π-calculus into CH , using private names for the storage of

Embedding the Pi-Calculus into CH 27

every translated communication construct. This translation is an embedding for
closed processes w.r.t. ∼c, and preserves the may-convergence behavior as well
as the should-convergence behavior. The translation τ0 meets the gold standard,
since even for open processes, it is adequate w.r.t. the respective contextual
equivalences.

For translations that use global names, we started an investigation on exhibit-
ing (potentially) correct translations. The result is that in the design space of all
(global) translations we identified several minimal translations that are poten-
tially correct. We characterized all incorrect “small” translations, where we left
the issue open whether there is a correct translation with only one check-MVar
with unrestricted usage.

For two particular global translations, we have shown that they are conver-
gence equivalent, i.e. they preserve and reflect the may-convergence behavior and
the should-convergence behavior on closed processes. We also proved adequacy
of the translations (on open processes) and full-abstraction if closed processes
are translated. The exact form of the translations were found by our imple-
mented tool to search for translations and to refute their correctness. The tool
also showed that there is no correct gstb-translation with the interprocess check
restriction for less than 3 check-MVars.

Further work may be to consider extended variants of the π-calculus. We are
convinced that adding recursion and sums can easily be built into the transla-
tion, while it might be challenging to encode mixed sums or (name) matching
operators. For name matching operators, our current translation would require
to test usual bindings in CH for equality which is not available in core-Haskell.
Solutions may either use an adapted translation or an adapted core language
that supports so-called observable sharing [5,7]. The translation of mixed-sums
into CH appears to require more complex translations, where the send and
receive-parts are not linear lists of actions.

Another interesting research question for future work is whether the pi-
calculus can be embedded in call-by-need lambda calculi with amb. Note that [4]
show that the amb-operator is encodable in the π-calculus.

Acknowledgments

We thank an anonymous reviewer for advises to improve the translation. In
particular for providing the counter-example in the last row of Table 1.

28 M. Schmidt-Schauß and D. Sabel

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The Spi
calculus. In CCS 1997, pages 36–47. ACM, 1997.

2. R. Banach, J. Balázs, and G. A. Papadopoulos. A translation of the pi-calculus
into MONSTR. J.UCS, 1(6):339–398, 1995.

3. G. Boudol. Asynchrony and the pi-calculus. Technical Report Research Report
RR-1702,inria-00076939, INRIA, France, 1992.

4. A. Carayol, D. Hirschkoff, and D. Sangiorgi. On the representation of McCarthy’s
amb in the pi-calculus. Theoret. Comput. Sci., 330(3):439–473, 2005.

5. K. Claessen and D. Sands. Observable sharing for functional circuit description. In
ASIAN 1999, volume 1742 of Lecture Notes in Comput. Sci., pages 62–73. Springer,
1999.

6. C. Fournet and G. Gonthier. The join calculus: A language for distributed mobile
programming. In APPSEM 2000, volume 2395 of LNCS, pages 268–332. Springer,
2002.

7. A. Gill. Type-safe observable sharing in haskell. In Haskell 2009, pages 117–128.
ACM, 2009.

8. Haskell-Community. Haskell main website, 2019. www.haskell.org.
9. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In

Proceedings of the European Conference on Object-Oriented Programming, ECOOP
’91, pages 133–147, London, UK, UK, 1991. Springer-Verlag.

10. C. Laneve. On testing equivalence: May and must testing in the join-calculus.
Technical Report UBLCS 96-04, University of Bologna, 1996.

11. J. McCarthy. A Basis for a Mathematical Theory of Computation. In Computer
Programming and Formal Systems, pages 33–70. North-Holland, Amsterdam, 1963.

12. R. Milner. Communicating and mobile systems - the Pi-calculus. Cambridge Uni-
versity Press, 1999.

13. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I & II. Inform.
and Comput., 100(1):1–77, 1992.

14. D. A. Orchard and N. Yoshida. Effects as sessions, sessions as effects. In POPL
2016, pages 568–581. ACM, 2016.

15. C. Palamidessi. Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Math. Structures Comput. Sci., 13(5):685–719, 2003.

16. S. L. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In POPL 1996,
pages 295–308. ACM, 1996.

17. G. D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci.,
5(3):223–255, 1977.

18. C. Priami. Stochastic pi-calculus. Comput. J., 38(7):578–589, 1995.
19. R. Pucella and P. Panangaden. On the expressive power of first-order boolean

functions in PCF. Theor. Comput. Sci., 266(1-2):543–567, 2001.
20. D. Sabel. Structural Rewriting in the pi-Calculus. In First International Workshop

on Rewriting Techniques for Program Transformations and Evaluation, volume 40
of OpenAccess Series in Informatics (OASIcs), pages 51–62. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2014.

21. D. Sabel and M. Schmidt-Schauß. A call-by-need lambda-calculus with locally
bottom-avoiding choice: Context lemma and correctness of transformations. Math.
Structures Comput. Sci., 18(03):501–553, 2008.

22. D. Sabel and M. Schmidt-Schauß. A contextual semantics for Concurrent Haskell
with futures. In PPDP 2011, pages 101–112. ACM, 2011.

Embedding the Pi-Calculus into CH 29

23. D. Sabel and M. Schmidt-Schauß. Conservative concurrency in Haskell. In LICS
2012, pages 561–570. IEEE, 2012.

24. D. Sabel and M. Schmidt-Schauß. Observing success in the pi-calculus. In WPTE
2015, volume 46 of OASICS, pages 31–46, 2015.

25. D. Sangiorgi and D. Walker. On barbed equivalences in pi-calculus. In CONCUR
200, volume 2154 of LNCS, pages 292–304. Springer, 2001.

26. D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes. Cam-
bridge university press, 2001.

27. M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, and D. Sabel. Adequacy of
compositional translations for observational semantics. In IFIP TCS 2008, volume
273 of IFIP, pages 521–535. Springer, 2008.

28. M. Schmidt-Schauß, D. Sabel, J. Niehren, and J. Schwinghammer. Observational
program calculi and the correctness of translations. Theor. Comput. Sci., 577:98–
124, 2015.

29. J. Schwinghammer, D. Sabel, M. Schmidt-Schauß, and J. Niehren. Correctly trans-
lating concurrency primitives. In ML 2009, pages 27–38. ACM, 2009.

30. P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A logical encoding of the pi-
calculus: model checking mobile processes using tabled resolution. STTT, 6(1):38–
66, 2004.

30 M. Schmidt-Schauß and D. Sabel

σ0(P) = νstop.(
main⇐== putMVar stop ()| stopm ()| σ(P))

σ(νx.P) = νx, chanx .(chanx m−|x = Channel chanx |σ(P))

σ(xy.P) = ⇐ τ(xy.P)

σ(x(y).P) = ⇐ τ(x(y).P)

σ(0) = ⇐ return ()

σ(Stop) = ⇐ takeMVar stop

σ(P|Q) = σ(P)|σ(Q)

σ(!P) = νf.(⇐ f|f = do {forkIO τ(P); f})

Fig. 7. Translations σ and σ0

A Convergence Properties of the Translation τ0

A.1 A Top-Down Variant σ of τ

We define a variant σ of the translation τ . It is intended to simplify the proofs.
Instead of generating CH -programs that during their run generate concurrent
processes and MVars (as τ does), the translation σ generates CH -processes,
which is closer to a direct implementation. The translation σ only modifies a top-
part, and refers to τ for the deeper translation parts that generate expressions.
The main reason for introducing the translation σ is that it simplifies the proofs
of correctness (of translations τ and τ0).

Definition A.1. The translation σ0 is similar to τ0, and the translation σ also
generates processes. Both translations are defined in Fig. 7. The translations
of contexts are defined analogously where the context hole is translated into the
context hole, i.e. σ([·]) = [·].

Definition A.2. The context Cσout for translation σ0 is defined as

Cσout = νf, stop.(
main⇐== putMVar stop ()| stop m ()|⇐ [·]).

The following strong relationship between the translations τ0 and σ0 (τ and σ,
resp.) holds and is helpful in proofs for the translation τ :

Lemma A.3. For all P ∈ ΠStop i) τ0(P)
sr,∗−−→ σ0(P) and ii)⇐ τ(P)

sr,∗−−→ σ(P).

Proof. For the first part, it suffices to verify that τ0(P) is a process that reduces
to σ0(P) as follows:

τ0(P) =
main⇐== do {stop ← newMVar (); forkIO τ(P); putMVar stop ()}

sr,nmvar−−−−−−→ sr,beta−−−−→ νstop.stop m ()|
main⇐== do {forkIO τ(P); putMVar stop ()}

sr,fork−−−−−→ sr,beta−−−−→ νstop.
main⇐== putMVar stop ()|stop m ()|⇐ τ(P)

sr,∗−−→ νstop.
main⇐== putMVar stop ()|stop m ()|σ(P) = σ0(P)

The
sr,∗−−→-sequence is derived from the second part of the lemma, and by

plugging-in the reduction sequence in the larger context. It remains to show

Embedding the Pi-Calculus into CH 31

the second part. We show this by induction on the size of P and by checking
all the cases. If P starts with an input or an output prefix or is Stop, then
⇐ τ(P) = σ(P), and thus the claim holds. If P is the process 0, then ⇐ τ(P) =
⇐ return () = σ(P). If P is a parallel composition P1|P2, then

⇐ τ(P1|P2) =⇐do {forkIO τ(P2); τ(P1)}
sr,fork−−−−−→ sr,beta−−−−→⇐ τ(P2)|⇐ τ(P1)

sr,∗−−→ σ(P2)|σ(P1) = σ(P1|P2)

The final
sr,∗−−→-sequence obtained as follows: by the induction hypothesis we have

⇐ τ(Pi)
sr,∗−−→ σ(Pi) for i = 1, 2 by combing and processing them sequentially we

get ⇐ τ(P2)|⇐ τ(P1)
sr,∗−−→ σ(P2)|⇐ τ(P1)

sr,∗−−→ σ(P2)|σ(P1).
If the process starts with νx, then

⇐ τ(νx.P) = ⇐ do {chanx ← newMVar ⊥; takeMVar chanx ;
letrec x = Channel chanx in τ(P)}

sr,nmvar−−−−−−→ sr,beta−−−−→ νchanx .(chanx m−
|⇐ do {takeMVar chanx ;

letrec x = Channel chanx in τ(P)})
sr,tmvar−−−−−−→ sr,beta−−−−→ νchanx .(chanx m−|⇐ letrec x = Channel chanx in τ(P))

sr,mkbinds−−−−−−−→ νx, chanx .(⇐ τ(P)|x = Channel chanx|chanx m−)
sr,∗−−→ νx, chanx .(σ(P)|x = Channel chanx|chanx m−)

Note that the (tmvar)-reduction is deterministic (i.e. a (dtmvar)-transformation),
since there is no alternative, and since the names of the visibility of the MVars
and the potential accesses leave only one possibility. The final standard reduc-
tion sequence is obtained by first applying the induction hypothesis for P to

derive ⇐ τ(P)
sr,∗−−→ σ(P) and then observing that the same reduction sequence

can be performed if there are more parallel components.
If the process is a replication, then

⇐ τ(!P) =⇐ letrec f = do {forkIO τ(P); f} in f
sr,mkbinds−−−−−−−→ νf.⇐ f|f = do {forkIO τ(P); f} = σ(!P)

This finishes the induction proof. ut

Lemma A.3 and correctness of (fork), (nmvar), (dtmvar), (beta), (cpce), and
(mkbinds) (see Proposition 3.6) imply:

Proposition A.4. For all P ∈ ΠStop: 1. σ(P) ∼c ⇐ τ(P) and 2. σ0(P) ∼c
τ0(P). Hence also σ(P) ∼c,τ0 ⇐ τ(P) and σ0(P) ∼c,τ0 τ0(P).

A.2 Preservation of May-Convergence

The goal of this section is to show that may-convergence of a closed ΠStop-process
P implies may-convergence of the translated process τ0(P). The main part is to

show that for a single step P
dia−−→ P ′ or P

dsc−−→ P ′ for closed ΠStop-processes
P, P ′, there are corresponding reduction steps of σ0(P) in the CH -calculus.

32 M. Schmidt-Schauß and D. Sabel

Lemma A.5. Let P ∈ ΠStop be a closed process with P
dia−−→ P ′. Then there is a

sequence σ0(P)
sr,∗−−→ σ0(P ′)|G in the CH -calculus, where G is a closed process

that can be seen as garbage, i.e. σ0(P ′)|G
gc−→ σ0(P ′).

Proof. Let P = D[x(y).Pr|xz.Ps] and P ′ = D[Pr[z/y]|Ps]. Since P is closed,
there is a binder νx in D, i.e. we can assume that D = D1[νx.D2[·]] for some
Dπ-contexts D1, D2. Since Dπ-contexts have no input- or output-prefix on the
hole-path, this shows:

σ0(P) = Cσout [D1[νx, chanx .chanx m−|x = Channel chanx
|D2[⇐do {checkx ← newMVar ();

putMVar (unchan x) (z, checkx);
putMVar checkx (); τ(Ps)}

|⇐do {(y, checkx)← takeMVar (unchan x);
takeMVar checkx; τ(Pr)}]]]

where D1, D2 are the σ-translations of D1,D2. Inspecting σ shows, that D1, D2

are D-contexts. There is a sequence of
sr−→-reductions (see Fig. 8) such that

σ0(P)
sr,15−−−→ Q = Cσout [D1[νx, chanx .chanx m−|x=Channel chanx

|D2[⇐do {τ(Ps)}|⇐do {τ(Pr)[z/y]}]]]
|(νcheckx .checkx m ())

where G = (νcheckx .checkx m ()) is garbage. Since

σ0(P ′) = Cσout [D1[νx, chanx .chanx m−|x = Channel chanx
|D2[σ(Pr[z/y])|σ(Ps)]]],

Lemma A.3 implies Q
sr,∗−−→ σ0(P ′)|νcheckx.checkxm ()

gc−→ σ0(P ′).

Lemma A.6. Let P, P ′ ∈ ΠStop be closed, such that P
dsc−−→ P ′. Then σ0(P)

sr,∗−−→
σ0(P ′), if rule (replunfold) is used, and σ0(P) ≡ σ0(P ′), otherwise. In particular,
σ0(P) ∼c σ0(P ′), and hence σ0(P) ∼c,0 σ0(P ′),

Proof. For rules (assocl) and (assocr), we have

σ0(D[(P1|P2)|P3]) = C[(σ(P1)|σ(P2))|σ(P3)] ≡ C[σ(P1)|(σ(P2)|σ(P3))]
= σ0(D[P1|(P2|P3)])

for some CH D-context C and thus, σ0(P) ≡ σ0(P ′). For (nuup1), we have

σ0(D[(νz.P1)|P2]) = C[σ(νz.P1)|σ(P2)])
= C[νz, chanz .(chanz m−|z = Channel chanz|σ(P1))|σ(P2)]
≡ C[νz, chanz .(chanz m−|z = Channel chanz|σ(P1)|σ(P2))]
= σ0(D[νz.(P1|P2)])

for some CH D-context C. Thus, σ0(P) ≡ σ0(P ′). For (nuup2), we have

σ0(D[νz.νx.P1]) = C[σ(νz.νx.P1)]
= C[νx, chanx .chanx m−|x = Channel chanxx

|νz, chanz .(chanz m−|z = Channel chanz|σ(P1)))]
≡ σ0(D[νx.νz.P1])

Embedding the Pi-Calculus into CH 33

σ0(P) = Cσout [D1[νx, chanx .chanx m−|x=Channel chanx
|D2[⇐do {checkx← newMVar (); putMVar (unchan x) (z, checkx);

putMVar checkx (); τ(Ps)}
|⇐do {(y, checkx)←takeMVar (unchan x); takeMVar (checkx); τ(Pr)}]]]

sr,nmvar−−−−−−→ sr,beta−−−−→Cσout [D1[νx, chanx , checkx .chanx m−|checkx m ()|x=Channel chanx
|D2[⇐do {putMVar (unchan x) (z, checkx);

putMVar checkx (); τ(Ps)}
|⇐do {(y, checkx)←takeMVar (unchan x);

takeMVar (checkx); τ(Pr)}]]]
sr,cpce−−−−→ sr,case−−−−→ Cσout [D1[νx, chanx , checkx .chanx m−|checkx m ()|x=Channel chanx

|D2[⇐do {putMVar (chanx) (z, checkx); putMVar checkx (); τ(Ps)}
|⇐do {(y, checkx)←takeMVar (unchan x);

takeMVar (checkx); τ(Pr)}]]]
sr,pmvar−−−−−−→ sr,beta−−−−→ Cσout [D1[νx, chanx , checkx .chanx m (z, checkx)|checkx m ()

|x=Channel chanx|D2[⇐do {putMVar checkx (); τ(Ps)}
|⇐do {(y, checkx)← takeMVar (unchan x);

takeMVar (checkx); τ(Pr)}]]]
sr,cpce−−−−→ sr,case−−−−→ Cσout [D1[νx, chanx , checkx .chanx m (z, checkx)|checkx m ()

|x=Channel chanx|D2[⇐do {putMVar checkx (); τ(Ps)}
|⇐do {(y, checkx)←takeMVar chanx ;

takeMVar (checkx); τ(Pr)}]]]
sr,tmvar−−−−−−→ sr,beta−−−−→

sr,case−−−−→ Cσout [D1[νx, chanx , checkx .chanx m−|checkx m ()|x=Channel chanx
|D2[⇐do {putMVar checkx (); τ(Ps)}
|⇐do {takeMVar (checkx); τ(Pr)[z/y]}]]]

sr,tmvar−−−−−−→ sr,beta−−−−→ Cσout [D1[νx, chanx , checkx .chanx m−|checkx m−|x=Channel chanx
|D2[⇐do {putMVar checkx (); τ(Ps)}
|⇐do {τ(Pr)[z/y]}]]]

sr,pmvar−−−−−−→ sr,beta−−−−→ Cσout [D1[νx, chanx , checkx .chanx m−|checkx m ()|x=Channel chanx
|D2[⇐do {τ(Ps)}|⇐do {τ(Pr)[z/y]}]]]

≡ Cσout [D1[νx, chanx .chanx m−|x=Channel chanx
|D2[⇐do {τ(Ps)}|⇐do {τ(Pr)[z/y]}]]]|(νcheckx .checkx m ())

= Q

Fig. 8. Reduction sequence σ0(P)
sr,15−−−→ Q which is used in Lemma A.5

34 M. Schmidt-Schauß and D. Sabel

for some CH D-context C. Thus, we have σ0(P) ≡ σ0(P ′). For rule (commute),
we have σ0(P) ≡ σ0(P ′), since

σ0(D[P1|P2]) = C[(σ(P1)|σ(P2))] ≡ C[(σ(P2)|σ(P1))] = σ0(D[P2|P1])

for some D-context C. Thus the claim holds.
For the rule (replunfold), we have:

σ0(D[!P]) = C[νf.(⇐ f|f = do {forkIO τ(P); f})]
sr,cpce−−−−→ C[νf.(⇐do {forkIO τ(P); f}|f = do {forkIO τ(P); f})]
sr,fork−−−−−→ C[νf.(⇐ τ(P)|⇐do {return (); f}|f = do {forkIO τ(P); f})]
sr,beta−−−−→ C[νf.(⇐ τ(P)|⇐ f|f = do {forkIO τ(P); f})]

≡ C[⇐ τ(P)|νf.(⇐ f|f = do {forkIO τ(P); f})]
sr,∗−−→ C[σ(P) |νf.(⇐ f|f = do {forkIO τ(P); f})] = σ0(D[P|!P])

where f 6∈ FV (P). This shows σ0(D[!P])
sr,∗−−→ σ0(D[P|!P]), using the pre-

vious items, and Lemma A.3 for the last
sr,∗−−→-transformation. The equivalence

σ0(P) ∼c σ0(P ′) follows from correctness of the used reduction steps (see Propo-
sition 3.6).

Lemma A.7. Let P be a closed CH -process such that P (
sr,∗−−→ · ∼c)∗ Q. Then

the following implications hold: i) If Q↓, then P↓ and ii) If Q↑, then P↑.

Proof. We only show the first part. The proof for the second part can be obtained
by replacing ↓ by ↑. The proof is by induction on the length of the relational

sequence. Let P (
sr,∗−−→ · ∼c)n P1

sr,∗−−→ P2 ∼c Q, where Q↓. From P2 ∼c Q we

derive that also P2↓, and hence also P1↓, since P1
sr,∗−−→ P2.

Lemma A.8. If a closed process P of the calculus ΠStop is successful, then

σ0(P)
sr,∗−−→ Q where Q is successful.

Proof. Process P must contain Stop in a D-context. Thus the translation gener-

ates a thread in a D-context, that executes takeMVar stop andQ
sr,tmvar−−−−−−→ sr,pmvar−−−−−−→

D[
main⇐== return ()]. For the second part of the lemma, it suffices to observe that σ

and τ do not generate a putMVar for the MVar stop (except in the context Cσout)
and thus, the MVar can always be emptied and the main-thread thereafter can
perform the putMVar-command to become successful.

Proposition A.9. Implication of may-convergence: Let P be a closed ΠStop-
process. If P↓ then τ(P)↓0.

Proof. Lemmas A.5 to A.8 imply that σ0(P)
sr,∗−−→ Q, where Q is successful,

using induction on the length of a standard reduction of P , hence σ(P)↓0. By
Proposition A.4 this also shows τ0(P)↓ which is the same as τ(P)↓0.

Note that in the previous proof it is irrelevant whether we remove the garbage

that stems from translated
dia−−→-steps or not: In the former case we know that

(gc) is a correct program transformation and thus does not change convergence,
and in the latter case we carry the garbage with the whole reduction sequence.

Embedding the Pi-Calculus into CH 35

P

sr,∗
��

σ0 // σ0(P)
(sr∪∼c),∗

tt
sr,n
��

P1

sr,∗
��

σ0 // σ0(P1)
(sr∪∼c),∗

ss sr,n′ n′<n��

Q1(succ.)

P2
σ0 // σ0(P2)(succ.) Q2(succ.)

Fig. 9. Proving reflection of may-convergence: structure of the induction step

A.3 The Translation Reflects May-Convergence

In this section we show that may-convergence of σ0(P) for a closed ΠStop-process
P implies may-convergence of P . We show that, by rearranging and extending
the standard reduction sequence to a successful process, a standard reduction
sequence of σ0(P) is obtained that corresponds to a standard reduction sequence
of P in the π-calculus. There are three essentially different actions that are ex-
ecuted by the standard reduction sequence of σ0(P), where the single reduction
steps may be distributed in the reduction sequence: interaction-reductions, repli-
cation of the !P -operator, and reducing τ -images to σ-images.

The following properties are easily checked for a translated closed ΠStop-
process P : τ0(P) is closed; τ0(P) contains the variable stop only in expressions
of the form ⇐ takeMVar stop, and τ0(P) is well-formed and well-typed.

Proposition A.10. Let P ∈ ΠStop be closed, n ∈ N and σ0(P)
sr,n−−→ Q1 such

that Q1 is successful. Then there is a standard reduction sequence P
sr,∗−−→ P1

and another standard reduction sequence σ0(P)
sr,∗−−→ Q′1 such that Q′1 and P1

are successful and Q′1 = σ0(P1).

Proof. We show that the following diagram holds by induction on the number

of all reduction steps in Red = σ0(P)
sr,n−−→ Q1.

P

sr,∗
��

σ0 // σ0(P)

(sr∪∼c),∗ss
sr,n
��

P1
σ0 // σ0(P1)(succ.) Q1(succ.)

In this diagram and in the diagram in Fig. 9 a plain arrow means a given and a
dashed arrow means an existing reduction.

The base case is that σ0(P) is of the form Cσout [D[⇐ takeMVar stop]], and
it standard-reduces in two steps to a successful process. In this case, the only
possible reason is that P contains Stop in a PCtxtπ-context, and σ0 maps it to
this subprocess. Then P is successful.

Now we show the induction step. A picture of the proof structure is shown in
Fig. 9. By the induction hypothesis, we have P1↓, but we have to calculate the
upper square for all possibilities of actions (interaction reductions, replication,

36 M. Schmidt-Schauß and D. Sabel

τ -to-σ-reduction), where we rearrange the CH -standard reduction sequence, ex-
tend it with missing reduction steps, which do not change success, and construct
a corresponding standard reduction sequence in the π-calculus.

Abstractly, a single induction step is intended to do the following: first we
identify reduction steps that make a complete or a partial execution that per-
forms one of the three actions. There may be two threads affected by interaction,
and otherwise only one thread is affected. We have to identify one particular (dis-
tributed) reduction subsequence S that can be executed as a prefix; i.e. Red can
be rearranged to S; Red ′ having the same total effect. There are two possibilities:
Either there is such a full subsequence S of reduction steps, or we only identify a
prefix of such a subsequence, and the corresponding threads do not have further
reduction steps (of the action) until Q1 is reached. In the first case, everything is
fine, and a process P1 can be determined. In the second case, the subsequence has
to be removed, or extended by the missing reduction steps. Since the thread(s)
is/are stopped, these additional reduction steps are independent of all other re-
duction steps. Hence these can be virtually shifted after Q1 (perhaps turning
into non-sr-reductions) and determine Q′1. We will add the extra reduction steps
to the prefix of the reduction sequence, and then obtain a complete subsequence.

Since the intention of the proof is to construct a reduction sequence between
images of translation σ, this enforces that sometimes τ -translated parts have to
be sr-reduced to their σ-translation, and that a (gc)-step has to be inserted as a
∼c-step.

Referring to Definition A.1 of translation σ, there are several cases. Let us
consider the case that an image of an ia-reduction is the first action. Analyz-
ing Red shows that, ideally, if we only look for the (newmvar)-, (tmvar)-, and
(pmvar)-reductions, the reduction sequence starts as follows

(ia-0) checkx← newMVar();
(ia-1) putMVar (unchan x) (y, checkx) in thread a;
(ia-2) takeMVar (unchan x) in thread b (6= a);
(ia-3) takeMVar checkx in thread b;
(ia-4) putMVar checkx () in thread a.

However, there may be deviations, like interleaving of reduction steps in parallel
threads, or an incomplete subsequence. We analyse the possibilities in a reduc-
tion sequence, where we omit the non-interfering interleaved actions. Of course,
we assume that the programs have the commands for (ia-0);(ia-1);(ia-4) as a se-
quence in one thread-program and the commands for (ia-2);(ia-3) as a sequence
in the other thread-program.

1. (ia-0) is the only action for checkx; no further action; thread a is blocked.
2. (ia-0);(ia-1) is performed in thread a; no other thread uses the MVar (unchan x);

thread a is blocked.
3. (ia-0);(ia-1);(ia-2) is performed first in thread a, and some other thread b won

the race for (ia-2), and then no further progress; threads a, b are blocked.
takeMVar checkx is not possible in another thread, since the name is un-
known to other threads. However, the MVar (unchan x) is already available
for other threads.

Embedding the Pi-Calculus into CH 37

4. (ia-0);(ia-1);(ia-2);(ia-3) is performed with (ia-0);(ia-1) in thread a, and then
(ia-2); (ia-3) in thread b; thread a is blocked, but thread b can proceed. MVar
checkx is not garbage.

5. (ia-0);(ia-1);(ia-2);(ia-3);(ia-4) is performed with (ia-0);(ia-1);(ia-4) in thread
a, and (ia-2); (ia-3) in thread b. Thread a is released after the full sequence,
thread b after (ia-3). Moreover, after (ia-4), the MVar checkx can no longer
be used and is garbage.

We show that modifying the reduction sequence Red , keeping the sr-property,
results in another reduction sequence Red ′ that starts with the ideal 5 reductions,
followed by Red ′′ also ends in a successful process, such that Red ′′ contains less
standard-reduction steps.

Now we focus the ia-related reduction steps in Red . We remove the following
subsequences: In case there is a thread such that after an (ia-0) or after an (ia-
0);(ia-1) step, then the thread is blocked; Then we remove these reduction steps
from Red . We do this in all cases.

Now we focus the earliest occurrence in Red of an (ia-2)-related reduction
step. If the (ia)-subsequence corresponding to the first one is complete, then we
move it to the start of the sequence. Of course the non-MVar related sr-steps
in the corresponding threads a, b are also moved. In the following we do not
mention these sr-reductions.
Now let us consider the incomplete ones:

– If exactly (ia-0);(ia-1);(ia-2) are in Red , then thread a, b do not further con-
tribute to the success, however, MVar (unchan x) may be used for the success
(triggered by another thread). We add the reductions (ia-3) and (ia-4) in or-
der to complete the ia-sequence, which makes the reduction sequence longer,
but does not add (ia-2)-reduction steps.

– If exactly (ia-0);(ia-1);(ia-2);(ia-3) are in Red , then we add the missing (ia-4)
step without changing success and the rest of the reduction sequence.

In order to apply the induction hypothesis, we insert a (gc)-step to remove the
check-MVar that was only used for one interaction step in the translation. This
(gc) is correct, hence we can represent it by a ∼c-step.

Let⇐ τ(Pa) and⇐ τ(Pb) be the processes that are left by the four reduction
steps that simulate the (ia)-reduction. It remains to check whether⇐ τ(Pa) and
⇐ τ(Pb) reduce to σ(Pa) and σ(Pb), respectively. Here we use the same construc-
tion as above: The reduction steps that are already in the sequence are shifted
to the left. Since the threads are blocked if there are missing reductions, we can
add the missing reduction steps to the reduction sequence, keeping the property
that the resulting process of the whole sequence is successful. For details, we
refer to Lemma A.3. We obtain the upper square of the diagram, where also the
number of reductions is strictly smaller for the remaining reduction sequence.

We now consider the case that the reduction is an image of a (replunfold)
step. Then the corresponding reduction is the (fork)-reduction. In fact, it is a se-

quence
cpce−−−→ · fork−−−→ · beta−−→. We can, following the reduction pattern in the proof

of Lemma A.6, move the reduction steps to the front, which are corresponding to

38 M. Schmidt-Schauß and D. Sabel

a single replication. If reduction steps are missing, we can add the missing steps
without disturbing the final success. Also, we can add the necessary reductions
that may be missing to turn the⇐ τ(Pr) into σ(Pr). Again we can construct the
square diagram, as requested, where also in this case, the process that represents
the final success may have changed.

Finally, we can apply the induction hypothesis, since the combined measure is
strictly reduced, and we thus obtain a standard reduction in ΠStop to a successful
process.

Propositions A.9 and A.10 imply:

Proposition 4.5. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent
for ↓, i.e. P↓ is equivalent to τ0(P)↓. This also implies that P⇑ is equivalent to
τ(P)⇑.

A.4 Equivalence of Should-Convergence of the Translation

We argue that the translation τ is invariant w.r.t. should-convergence, where we
work with may-divergence and where Proposition 4.5 is very useful since it is
the induction base.

Proposition A.11 (Preservation of May-Divergence). Let P ∈ ΠStop be

closed, n ∈ N and P
sr,n−−→ P1 such that P1⇑. Then there is a standard reduction

sequence σ0(P)
sr,∗−−→ Q with Q⇑.

Proof. We use induction on n to show that P
sr,n−−→ P1 where P1⇑ implies

σ0(P)(
sr,∗−−→ · ∼c)∗Q′ where Q′ is must-divergent. The base case n = 0 is covered

by Proposition 4.5. For the induction step, Lemmas A.5 and A.6 can be applied
for the first reduction step and then the induction hypothesis can be applied to
show the claim. Finally, we apply item ii) of Lemma A.7 to derive the claim.

The last case is to show that reflection of may-divergence holds, i.e. σ0(P)↑ =⇒
P↑. This is almost similar to the arguments for σ0(P)↓ =⇒ P↓ where some
more arguments are needed to show that the final process remains must-divergent
after the rearrangements and additions to the reduction sequence.

Proposition A.12. Let P ∈ ΠStop be closed, n ∈ N and σ0(P)
sr,n−−→ Q1 such

that Q1⇑. Then there is a standard reduction sequence P
sr,∗−−→ P1 with P1⇑,

and another standard reduction sequence σ0(P)
sr,n−−→ Q′1 such that Q′1⇑ and

Q′1 = σ0(P ′1).

Proof. The following diagram gives an orientation on the goals of the proof and
the induction on n.

P

sr,∗
��

σ0 // σ0(P)

(sr∪∼c),∗tt
sr,n
��

P1⇑
σ0 // σ0(P1)⇑ Q1⇑

Embedding the Pi-Calculus into CH 39

Most arguments for a construction of the the reduction sequence σ0(P)
sr∪∼c,∗−−−−−→

σ0(P1) are already in the proof of Proposition A.10.
However, the treatment of the incomplete (ia)-reduction sequences is different,
so we make it explicit.
The cases are:

1. In the case that only the (ia-0) is present, we can omit it, since it is correct.

2. If at least (ia-0);(ia-1);(ia-2) is there, then we add the missing reductions.

The argument is: If σ0(P)
sr,∗−−→ Q⇑ and Q

sr∪∼c,∗−−−−−→ Q′ then also Q′⇑, and we
can perform the extra reductions (like (ia-3);(ia-4) from Q, and then shift
them closer to the (ia-0);(ia-1);(ia-2)-sequence. This makes the ia-sequence
complete, and does not change the induction measure.

3. The case that the incomplete sequence is (ia-0);(ia-1), and (ia-2) is not
present, needs more arguments: There are two possibilities:

(a) There is a reduction sequence starting from Q, which contains the needed

(ia-2). Then we will shift first the (ia-2) such that Q
(ia-2)−−−→ Q′, where

obviously Q′⇑. Then we shift the (ia-2) further to the left, such that
we have the sequence (ia-0);(ia-1);(ia-2), and we can then use the other
cases. Here we have modify the induction measure: first the number of
(ia-2) in the reduction sequence to Q, and as second component the

total number of (ia)-reductions in the sequence σ0(P)
sr,∗−−→ Q. We have

removed more than one (ia)-reduction in the induction, hence we can
apply the induction hypothesis.

(b) There is no reduction sequence starting from Q with the needed (ia-2).
In this case the argument uses that the current CH-program is a trans-
lation of a ΠStop-process. We remove the (ia-1) from the reduction se-
quence. The reduction leads to Q1, which is the result of the reduction
sequence leading to Q, but without the (ia-1)-reduction. Now there may
be another thread that can access the MVar (unchan x), again using
(ia-0);(ia.1) in the other thread. However, since from Q there is no (ia-2)
possible for MVar (unchan x), the same must hold for Q1. Hence, the
removal permits only small local changes, but there is still no successful
reduction from Q1. Hence Q1⇑. Of course, we can now also remove the
(ia-0)-reduction.

Note that we also have to use the (gc)-reduction removing the check-MVar
in case of a complete (ia)reduction in CH, which adds a ∼c to the combined
reduction sequence.

Using these arguments the proof is otherwise completely analogous to the
proof of Proposition A.10, and we are done.

Proposition 4.6. Let P ∈ ΠStop be closed. Then τ0 is convergence-equivalent
for ⇓, i.e. P⇓ is equivalent to τ0(P)⇓.

40 M. Schmidt-Schauß and D. Sabel

B Proofs and Details on Translations with Global Names

B.1 Failing Translations with Less than Three Check-MVars and
the Interprocess Check Restriction: Examples

Before we prove that the first translation of Table 2 is invariant for may- and
should-convergence, we show, how similar translations with less check-MVars fail.
The reason is usually that the translated sequences for send and receive are not
forced to be completely executed. For example, the translation of xy|x(y).xy.Stop
with one check-MVar where the sender program is [putS, takeC]; and the receiver
program is: [putC, takeS] confuses the sequence for the program consisting of two
threads, and where the π-process is not may-convergent, but the translated pro-
gram may-converges. The program is written in the first line as two threads, and
the sequence of execution in the second line:

[putS, takeC] [putC, takeS, putS, takeC, Stop]
1 – 2 3 4 5 6

The situation is similar for all other translations using one or two check-
MVars, and where every check-MVar is written and read only once per translated
interact. Either the communication is not synchronous, or the sequences of send
and receive that do not belong to the intended interact can be interleaved.

For documentation purposes, we detail an example for a bad behavior for a
translation using two check-MVars and which is similar to the first one, where
this example is a result of using our simulator. The translation is

send receive

[putS, putC1, takeC2] [takeC1, putC2, takeS]

The process in π-calculus notation is xz.za.Stop|xw.wa.Stop|x(y).y(u), which
is should-convergent. We write the variable name of the value-MVar also at the
check-MVar commands. Note that after a takeCx y, the y in the rest of the
thread is changed accordingly.
The program consists of three threads, where the sequence of the problematic
execution is:

[putSx z, putC
1
x, takeC2x, putSz a, putC

1
z, takeC2z, Stop]

1 2
[putSx w, putC

1
x, takeC2x, putSw a, putC1w, takeC2w, Stop]

6 7 8 9 10
[takeC1x, putC1x, takeSx y, takeC

1
y, putC2y, takeSy u]

3 4 5

The final program is deadlocked but not successful, hence this translation is not
invariant for should-convergence.

Embedding the Pi-Calculus into CH 41

ψ0,T (P) = νstop.(
main⇐== putMVar stop ()| stopm ()| ψT (P))

ψT (νx.P) = νx, contx , checkx1, . . . , checkxn.
(contx m−|checkx1 m−|. . .|checkxnm−
|x = Channel contx checkx1 . . . checkxn|ψT (P))

ψT (xy.P) = ⇐φT (xy.P)

ψT (x(y).P) = ⇐φT (x(y).P)

ψT (0) = ⇐ return ()

ψT (Stop) = ⇐ takeMVar stop

ψT (P|Q) = ψT (P)|ψT (Q)

ψT (!P) = νf.(⇐ f|f = do {forkIO φT (P); f})

Fig. 10. Induced translations ψT and ψ0,T for a gstb-translation T using n check-MVars

B.2 Correctness of Translations with Global Names

In the correctness proof of translation τ and τ0, we defined the top-down trans-
lation σ, σ0. For showing correctness of induced translations φT , we follow a
similar way, and define induced top-down translations ψT and ψ0,T in Fig. 10,
for a given gstb-translation T = (Tsend , Treceive) using n check-MVars.

We first show the strong relation between φT and ψT :

Proposition B.1. For all P ∈ ΠStop i) φ0,T (P)
sr,∗−−→ ψ0,T (P), ii)⇐φT (P)

sr,∗−−→
ψT (P), iii) ψT (P) ∼c ⇐φT (P) and iv) ψ0,T (P) ∼c φ0,T (P).

Proof. Parts i) and ii) can be proved similar to Lemma A.3. Part i) is completely
analogous, while for part ii) the translation of the ν-operator is different, and
thus the construction in the induction for this case is

⇐ φT (νx.P)(
sr,nmvar−−−−−−→ sr,beta−−−−→ sr,tmvar−−−−−−→ sr,beta−−−−→)n+1 sr,mkbinds−−−−−−−→
νx, contx , checkx 1, . . . , checkxn.

(⇐ φT (P)|contxm−|checkx 1 m−|. . .|checkxnm−
|x = Channel contx checkx 1 . . . checkxn)

where n is the number of check-MVars and where all (sr, tmvar)-steps are deter-
ministic. Parts iii) and iv) follow from Proposition 3.6 analogously to the proof
of Proposition A.4.

Now, we can prove preservation of may-convergence for any induced trans-
lation of an executable gstb-translation, and preservation of may-divergence,
provided that must-divergence equivalence already holds:

Proposition B.2. Let T be an executable gstb-translation. Let P be a closed
ΠStop-process.

– If P↓ then φ0,T (P)↓.
– If for all closed Q ∈ ΠStop: Q⇑ ⇐⇒ ψ0,T (Q)⇑ then the implication P↑ =⇒
φ0,T (P)↑ holds.

42 M. Schmidt-Schauß and D. Sabel

Proof. The proof of the first item is analogous to the proof of Proposition A.9 by
an induction on the given converging reduction sequence for P , that constructs
a converging sequence for ψ0,T (P) and then applies Proposition B.1 to derive
the sequence for φ0,T (P). The second item follows also by an induction on the
given reduction sequence for P to a must-divergent process, where the base case
is covered by the precondition.

We sketch the main steps, required to perform the induction:

– For the base case, one can verify that if a closed process P of the calculus

ΠStop is successful, then ψ0,T (P)
sr,∗−−→ Q where Q is successful.

– For the translation of
dia−−→-steps the following claim hold:

Let P ∈ ΠStop be a closed process with P
dia−−→ P ′. Then there is a

sequence ψ0,T (P)
sr,∗−−→ ψ0,T (P ′) in the CH -calculus.

The proof is similar to the proof of Lemma A.5 where one can verify that
• the sr-reduction for the CH -program belonging to putS or putC consists

of
sr,cpcx−−−−→ sr,case−−−−→ sr,pmvar−−−−−−→ beta−−→

• the sr-reduction for the CH -program belonging to takeS or takeC con-

sists of
sr,cpcx−−−−→ sr,case−−−−→ sr,takeMV ar−−−−−−−−−→ beta−−→

and that no garbage (in difference to Lemma A.5 is generated, and that after
executing sender and receiver program the requirements on an executable
gstb-translation imply that the corresponding MVars are again empty.

– For other reduction steps in the ΠStop-calculus the following claim can be
proved analogous to Lemma A.6 with a different translation of νx, but this
does not change the result:

Let P, P ′ ∈ ΠStop be closed, such that P
dsc−−→ P ′. Then ψ0,T (P)

sr,∗−−→
ψ0,T (P ′), if rule (replunfold) is used, and ψ0,T (P) ≡ ψT (P ′), other-
wise. In particular, ψ0,T (P) ∼c ψ0,T (P ′).

To prove convergence equivalence for φ0,T for a given gstb-translation it thus
suffices to show, that ψ0,T reflects may-convergence and may-divergence

B.3 Correctness of a Translation with the Interprocess Check
Restriction and Using Three Global Check-MVars

We sketch that the first translation in Table 2 is correct. The translation is

T1 = (Tsend , Treceive) = ([putS, putC1, takeC2, putC3], [takeC1, putC2, takeC3, takeS])

We conjecture that all four translations are correct using similar arguments.
We leave open whether the translations 5,6 of Table 2 are correct. In the proof
we mention only the reduction steps that correspond to actions.

Theorem B.3. For all closed π-processes P and the translation φ0,T1
, the equiv-

alences P↓ ⇐⇒ φ0,T1
(P)↓ and P⇓ ⇐⇒ φ0,T1

(P)⇓ hold.

Proof. 1. If P↓, then φ0,T1
(P)↓ follows from Proposition B.2.

Embedding the Pi-Calculus into CH 43

2. Let us assume that ψ0,T1
(P)↓, and let ψ0,T1

(P)
∗−→ s0 be a successful re-

duction sequence. The task is now to find a rearrangement of the reduction
sequence which remains successful, and that can be translated back into
a ΠStop-calculus reduction sequence. We only consider the MVar accesses
ignoring the other reduction steps and try to make an appropriate rear-
rangement. We can assume that there is an access to an MVar, say x, in the
reduction sequence. Due to the initialization, the first one is a putSx, i.e. a
putMVar on x.
If the sequence putC1x, takeC

2
x, putC

3
xin the thread of putSx is not finished,

then this thread does not contribute to the success. Also the Treceive se-
quence cannot be finished. Hence we can remove all the reductions from
both MVar-access-sequences without changing the success. This makes the
reduction sequence smaller and we can use induction. If the Tsend -sequence
is complete, but the takeSx of the Treceive -sequence is missing, then it is
impossible that another Treceive -sequence starts (see Proposition 5.8) Hence
we can add the takeC3x, takeSx-sequence or only the action takeSx with-
out changing success and thus the two sequences are completely done, and
retranslatable. We can move the reductions as far to the left as possible,
close to the start of Tsend with putSx. Then we can apply induction on the
remaining part of the reduction sequence.
Thus we have ψ0,T1

(P)↓ =⇒ P↓. By Proposition B.1 this also shows
φ0,T1

(P)↓ =⇒ P↓.
3. Now we can assume that P↓ ⇐⇒ ψ0,T1(P)↓, and also P⇑ ⇐⇒ ψ0,T1(P)⇑.
4. The implication P↑ =⇒ φ0,T1

(P)↑ now follows from Proposition B.2.
5. The implication φ0,T1(P)↑ =⇒ P↑ is a bit more complex and requires again

rearranging the reduction sequence. We show ψ0,T1
(P)↑ =⇒ P↑ and apply

Proposition B.2. to derive the result for φ0,T1
(P)↑.

However, we now have to argue more in the case of reduction subsequences
that do not correspond to a translated interact. Therefore we have to show
that the removal of certain reduction steps and/or the addition of reduction
steps is invariant w.r.t. must-divergent processes.
Due to Proposition 5.8, it is sufficient to consider a reduction sequence that
exhibits may-divergence, and look for the leftmost single MVar accesses:

Let ψ0,T1
(P)

sr,∗−−→ s∞ be a reduction sequence where s∞ is must-divergent.
– Let there be a leftmost putSx for channel x, and also perhaps a subse-

quent putC1x, but no more actions for x in the sequence. Let s2 be the
process after performing putSx (or putC1x, if present), and s1 be the pro-
cess before performing putSx Then we distinguish two cases: i) If there is
no other thread which can perform takeC1, then we can remove the oper-
ations, constructing a s′∞ which still must be must-divergent: Any other
send-sequence on x starting with putSx performed by another thread
also cannot be completed, since there is no receiver that can perform
takeC1 ii) There is another thread which can perform takeC1 (but does
not do it). Then this thread is blocked and still present in s∞. Thus
we can add the step after s∞ and derive an s′∞ and then we shift the
reductions that perform the takeC1 to the left.

44 M. Schmidt-Schauß and D. Sabel

– The next case is the execution of putSx and putC1x in thread 1, and
takeC1x in thread 2, but no further actions in the reduction sequence.
Now it is not possible to argue using removal of the steps, since there
may be a may-convergent reduction sequence using another thread for
takeC1x. Now Proposition 5.8, can be used. If we look for a possible re-
duction sequence from s∞, then there is one reduction sequence (almost
sr-reduction sequence if we ignore the main thread) that executes the
complete interact for x. Since s∞ is must-divergent, we can add reduc-
tion steps and the result will be must-divergent. Hence we can prolong
the reduction sequence and also by shifting the missing reduction to the
left obtain a sequence where the translated interact is complete.

– the final case is that we have the 8 actions for channel x in two threads.
These can be shifted to the left, since there is no disturbance with other
threads, and we obtain a complete interact that is retranslatable.

B.4 Correctness of a Translation without the Interprocess Check
Restriction and Two Global Check-MVars

We sketch that the first translation in Table 3 is correct. The translation is

T2 = (Tsend , Treceive) = ([putC1, putS, takeC2, takeC1], [takeS, putC2])

We conjecture that the second translation in Table 3 can be proved correct using
similar arguments. We mention only the reductions that correspond to actions.

Theorem B.4. For all π-processes P and the translation φ0,T2
, the equivalences

P↓ ⇐⇒ φ0,T2
(P)↓ and P⇓ ⇐⇒ φ0,T2

(P)⇓ hold.

Proof. We can reason similar to the proof of Theorem B.3. Concentrating on the
core of the proof, it suffices to show that ψT2

(P)↓ =⇒ P↓ and ψT2
(P)↑ =⇒

P↑, where for the second implication we can assume that Q⇑ ⇐⇒ ψT2
(Q)⇑

holds for all closed ΠStop-processes Q.

1. Let us assume that ψT2
(P), and let ψT2

(P)
∗−→ s0 be a successful reduc-

tion sequence. The task is now to find a rearrangement of the reduction
sequence which remains successful, and that can be translated back into
a ΠStop-calculus reduction sequence. We only consider the MVar accesses
ignoring the other reduction steps and try to make an appropriate rear-
rangement. We can assume that there is an access to an MVar, say x, in
the reduction sequence. Due to the initialization, the first one is a putC1x. If
the sequence putSx, takeC

2
x, takeC

1
x in the thread of putC1x is not finished,

then this thread does not contribute to the success. Also the Treceive se-
quence cannot be finished. Hence we can remove all the reductions from
both MVar-access-sequences without changing the success. This makes the
reduction sequence smaller and we can use induction. If the Tsend -sequence
is complete, but the takeSx of the Treceive -sequence is missing, then it is im-
possible that another Treceive -sequence starts (see Proposition 5.10) Hence

Embedding the Pi-Calculus into CH 45

we can add the takeSx, putC
2
x-sequence without changing success and thus

the two sequences are completely done, and retranslatable. We can move the
reductions as far to the left as possible, close to the start of Tsend with putC1x.
Then we apply induction on the remaining part of the reduction sequence.

2. The implication ψT2(P)↑ =⇒ P↑ requires again rearranging the reduc-
tion sequence. However, we now have to argue more in the case of reduction
subsequences that do not correspond to a translated interact. Therefore we
have to show that the removal of certain reduction steps and/or the addi-
tion of reduction steps is invariant w.r.t. must-divergent processes. Due to
Proposition 5.10, it is sufficient to consider a reduction sequence that ex-
hibits may-divergence, and look for the leftmost single MVar accesses: Let

ψT2
(P)

sr,∗−−→ s∞ be a reduction sequence where s∞ is must-divergent.

– Let there be a leftmost putC1x for channel x, and also perhaps a sub-
sequent putSx, but no more actions for x in the sequence. If there is
no thread that could perform takeSx, then we can remove the putC1x.
and putSx-executions and the adapted process s′∞ remains to be must-
divergent, since any other sender that performs putC1x also cannot be
completed. If there is a thread that can perform takeSx, then this is still
possible in s∞. Thus we add the takeSx (and the putSx if needed) for
s∞ and then shift the corresponding reductions to the left. Then we can
use another case of this proof.

– The next case is the execution of putC1x and putSx in thread 1, and
takeSx in thread 2, but no further actions in the reduction sequence. Now
Proposition 5.10 implies that if we look for a possible reduction sequence
from s∞, then there is one reduction sequence (almost sr-reduction se-
quence if we ignore the main thread) that executes the complete interact
for x. Since s∞ is must-divergent, we can add reduction steps and the
result will be must-divergent. Hence we can prolong the reduction se-
quence and also by shifting the missing reduction to the left obtain a
sequence where the translated interact is complete.

– The next case is the execution of putC1x and putSx (and perhaps takeC2x)
in thread 1, and takeSx, putC

2
x in thread 2, but no further actions in

the reduction sequence. Again Proposition 5.10 implies that if we look
for a possible reduction sequence from s∞, then there is one reduction
sequence (almost sr-reduction sequence if we ignore the main thread)
that executes the complete interact for x. Since s∞ is must-divergent,
we can add reduction steps and the result will be must-divergent. Hence
we can prolong the reduction sequence and also by shifting the missing
reduction to the left obtain a sequence where the translated interact is
complete.

– the final case is that we have the 6 actions for channel x in two threads.
These can be shifted to the left, since there is no disturbance with other
threads, and we obtain a complete interact that is retranslatable.

46 M. Schmidt-Schauß and D. Sabel

Γ ` e :: IO ()

Γ ` ⇐ e :: wt

Γ ` e :: t

Γ ` x = e :: wt

Γ ` P1 :: wt, Γ ` P2 :: wt

Γ ` P1|P2 :: wt

Γ (x) = MVar t, Γ ` e :: t

Γ ` xm e :: wt

Γ (x) = MVar t

Γ ` xm− :: wt

Γ ` P :: wt

Γ ` νx.P ::wt

Γ ` e :: t

Γ ` return e :: IO t

Γ ` e1 :: IO t1, Γ ` e2 :: t1 → IO t2

Γ ` e1 >>= e2 :: IO t2

Γ ` e :: IO ()

Γ ` forkIO e :: IO ()

Γ ` e :: MVar t

Γ ` takeMVar e :: IO t

Γ ` e1 :: MVar t, Γ ` e2 :: t

Γ ` putMVar e1 e2 :: IO ()

Γ ` e :: t

Γ ` newMVar e :: IO (MVar t)

∀i : Γ ` ei :: ti, t1 → . . .→ tn → tn+1 ∈ types(c)

Γ ` (c e1 . . . ear(c)) :: tn+1

∀i : Γ (xi) = ti, ∀i : Γ ` ei :: ti, Γ ` e :: t

Γ ` (letrec x1 = e1, . . . xn = en in e) :: t

Γ ` e1 :: t1 → t2, Γ ` e2 :: t1

Γ ` (e1 e2) :: t2

Γ (x) = t1, Γ ` e :: t2

Γ ` (λx.e) :: t1 → t2

Γ (x) = t

Γ ` x :: t

Γ ` e1 :: t1, Γ ` e2 :: t2
t1 = t3 → t4 or t1 = (T . . .)

Γ ` (seq e1 e2) :: t2

Γ ` e :: t1 and t1 = (T . . .), ∀i : Γ ` (ci x1,i . . . xni,i) :: t1, ∀i : Γ ` ei :: t2

Γ ` (caseT e of(c1 x1,1 . . . xn1,1 -> e1) . . . (cm x1,m . . . xnm,m -> em)) :: t2

Fig. 11. Typing rules for CH

C Proofs and Additonal Definitions for the CH-Calculus

C.1 Typing System and Rules for CH

Even though the type system is monomorphic for simplicity, we “overload” the
data constructors and thus assume that data types used in case-constructs have a
fixed arity, and that the data constructors of every type have a polymorphic type
according to the usual conventions. The set of monomorphic types of constructor
c is denoted as types(c).

For simplicity, we assume that every variable is explicitly typed: we assume
that every variable x has a built-in type, denoted by a global typing function for
variables with Γ , i.e. Γ (x) is the type of variable x. The notation Γ ` e :: τ means
that type τ can be derived for expression e using the global typing function Γ .
For processes the notation Γ ` P :: wt means that the process P can be well-
typed using the global typing function Γ . The typing rules are given in Fig. 11.

C.2 Proof of Proposition 3.5

Proposition 3.5. Let P1, P2 be well-formed and P1 ≡ P2. Then P1 ∼c P2.

Proof. Let P1, P2 be well-formed, P1 ≡ P2, and D ∈ PCtxtCH . We have to show
i) D[P1]↓ =⇒ D[P2]↓; ii) D[P2]↓ =⇒ D[P1]↓; iii) D[P1]⇓ =⇒ D[P2]⇓; and
iv) D[P2]⇓ =⇒ D[P1]⇓. The process D[P1] is successful iff D[P2] is successful,
since ≡ cannot remove or introduce a main-thread. For any process P3, we have:

Embedding the Pi-Calculus into CH 47

D[P1]
sr−→ P3 iff D[P2]

sr−→ P3, since ≡ is a congruence and since
sr−→ is closed

w.r.t. ≡. Using both facts, we can use induction on a given reduction sequence
starting with D[Pi] and ending in a successful process, to show that D[Pj] reduces
to a successful process, where (i, j) ∈ {(1, 2), (2, 1)}. This shows parts i) and ii).

For the remaining parts, we show D[P1]↑ ⇐⇒ D[P2]↑. We use induction
on a given reduction sequence starting with D[Pi] and ending in must-divergent
process to show that D[Pj]↑ where (i, j) ∈ {(1, 2), (2, 1)}. The base case holds,
since parts i) and ii) imply D[P1]⇑ ⇐⇒ D[P2]⇑ and the induction step again
uses the fact, that each reduction step applied to D[Pi] can also be applied to
D[Pj] for (i, j) ∈ {(1, 2), (2, 1)}.

C.3 Embedding CH in CHF

We briefly recall the program calculus CHF [22,23] and then provide an em-
bedding of CH into CHF . After showing that the embedding is adequate w.r.t.
contextual semantics we transfer results on the correctness of program trans-
formations from CHF to CH . Since the calculus CHF is quite similar to the
calculus CH , we often only comment on the differences between both calculi.

The syntax of processes, expressions, monadic expressions and types is given
in Fig. 12. The laws of structural congruence and the syntax of contexts are given
in Figs. 13 and 14. The calculus CHF uses the same types as the calculus CH .
Expressions in CHF are like expressions in CH , with the only difference that the
monadic operator forkIO is replaced by the monadic operator future. While
forkIO is of type IO () → IO () the operator future is of type IO t → IO t
for any type t. On the process-level CH threads ⇐ e are replaced by futures
x⇐ e where x is an introduced variable, called the name of the future. The
operational behavior is, that expression e (of type IO t) is evaluated concurrently
and thereafter the result (of type t) is bound to variable x, which makes the
value of the concurrent computation accessible. In the standard reduction of the
calculus CHF (see Fig. 15) this is implemented by the following changes w.r.t.
the standard reduction in CH : the rule (fork) creates the new future (instead of
a new thread) and the calling thread receives the name of the future as result.
If a concurrent thread finishes its computation, then the result is shared as a
global binding and the thread is removed by the (new) rule (unIO).

The main thread in CHF is a future and it is written as x
main⇐== e. Definitions

of functional values, monadic values, and values are as in CH adapted to the syn-

tax changes. A well-formed process P is successful, if P ≡ νx1. . . . νxn.(x
main⇐==

return e|P ′). The definitions of may-convergence and should-convergence in
CHF are the same as in CH (see Definition 3.2), but adapted to the syntax
changes and using the standard reduction defined in Fig. 15. Contextual approx-
imation ≤c and contextual equivalence ∼c on CHF -processes and expressions
are defined analogous to Definition 3.3. Well-formed and structural congruent
CHF -processes P1 ≡ P2 are also contextual equivalent (i.e. P1 ∼c P2, see [22]).

48 M. Schmidt-Schauß and D. Sabel

P ∈ ProcCHF ::= (P1|P2) | x⇐ e | νx.P | xm e | xm− | x = e

e ∈ ExprCHF ::= x | m | λx.e | (e1 e2) | seq e1 e2 | c e1 . . . ear(c)
| letrec x1=e1, . . . , xn=en in e
| caseT e of (cT,1 x1 . . . xar(cT,1) -> e1) . . . (cT,|T | x1 . . . xar(cT,|T |) -> e|T |)

m ∈ MExprCHF ::=return e | e >>= e′ | future e | takeMVar e | newMVar e | putMVar e e′
t ∈ TypCHF ::= IO t | (T t1 . . . tn) | MVar t | t1 → t2

Fig. 12. Syntax of expressions, processes, and types of CHF

P1|P2 ≡ P2|P1

(P1|P2)|P3 ≡ P1|(P2|P3)
(νx.P1)|P2 ≡ νx.(P1|P2) if x 6∈ FV (P2)
νx1.νx2.P ≡ νx2.νx1.P

P1 ≡ P2 if P1 =α P2

Fig. 13. Structural congruence of CHF

D ∈ PCtxtCHF ::= [·] | D|P | P|D | νx.D
M ∈ MCtxtCHF ::= [·] | M >>= e

F ∈ FCtxtCHF ::=E | (takeMVarE) | (putMVarE e)
E ∈ ECtxtCHF ::= [·] | (E e) | (seq E e) | (case E of alts)

Fig. 14. PCtxtCHF -, MCtxtCHF -, FCtxtCHF -, ECtxtCHF -contexts

Monadic Computations

(lunit) y⇐M[return e1 >>= e2]
sr−→ y⇐M[e2 e1]

(tmvar) y⇐M[takeMVar x]|xm e
sr−→ y⇐M[return e]|xm−

(pmvar) y⇐M[putMVar x e]|xm− sr−→ y⇐M[return ()]|xm e

(nmvar) y⇐M[newMVar e]
sr−→ νx.(y⇐M[return x]|xm e)

(fork) y⇐M[future e]
sr−→ νz.(y⇐M[return z]|z⇐ e) where z is fresh

(unIO) y⇐ return e
sr−→ y = e if the thread is not the main-thread

Functional Evaluation

(cpce) y⇐M[F[x]]|x = e
sr−→ y⇐M[F[e]]|x = e

(mkbinds) y⇐M[F[letrec x1=e1, . . . , xn=en in e]]
sr−→ νx1 . . . xn.(y⇐M[F[e]]|x1=e1|. . .|xn=en)

(beta) y⇐M[F[((λx.e1) e2)]]
sr−→ y⇐M[F[e1[e2/x]]]

(case) y⇐M[F[caseT (c e1 . . . en) of . . . (c y1 . . . yn -> e) . . .]]
sr−→ y⇐M[F[e[e1/y1, . . . , en/yn]]]

(seq) y⇐M[F[(seq v e)]]
sr−→ y⇐M[F[e]] where v is a functional value

Closure : If P1 ≡ D[P ′1], P2 ≡ D[P ′2], and P ′1
sr−→ P ′2 then P1

sr−→ P2.
Capture avoidance: We assume capture avoiding reduction for all reduction rules.

Fig. 15. Standard reduction rules of CHF (call-by-name-version)

Embedding the Pi-Calculus into CH 49

(gc) νx1, . . . , xn.(P|Comp(x1)|. . .|Comp(xn))→ P,
if ∀i ∈ {1, . . . , n} : Comp(xi) is a binding xi = ei, an MVar xim ei or xim−,
and x1, . . . , xn /∈ FV (P)

(dtmvar) νx.D[y ⇐ M[takeMVar x]|xm e]→ νx.D[y ⇐ M[return e]|xm−],
if for ∀D′ ∈ PCtxtCHF the first execution of (takeMVar x) is in thread y for
all sr-reductions starting with D′[νx.(D[y ⇐ M[takeMVar x]|xm e])]

(dpmvar) νx.D[y ⇐ M[putMVar x e]|xm−]→ νx.D[y ⇐ M[return ()]|xm e],
if ∀D′ ∈ PCtxtCHF and any e′ the first execution of (putMVar x e′)for all sr-
reductions starting with D′[νx.(D[y ⇐ M[putMVar x e]|xm−])] is in thread y

Fig. 16. Transformations (gc), (dtmvar), and (dpmvar)

Program transformations η in CHF are binary relations between CHF -processes,
where η is correct iff η ⊆ ∼c. We define garbage collection (gc) and deterministic
variants of (tmvar) and (pmvar) for the calculus CHF in Fig. 16.

Proposition C.1 ([22]). The transformations (lunit), (nmvar), (fork), (unIO),
(cpce), (mkbinds), (beta), (case), (seq) (gc), (dtmvar), and (dpmvar) are correct
program transformations, whereas (pmvar) and (tmvar) in general are not cor-
rect as program transformations.

We define an embedding ι which embeds CH into CHF :

Definition C.2. We define the translation ι : CH → CHF . For most of the
cases ι is applied homomorphically over the term structure, without changing the
syntax, i.e. for variables r and nullary constructors r: ι(r) := r and for any syn-
tactic operator f and arguments r1, · · · , rn: ι(f r1 . . . rn) := f ι(r1) . . . ι(rn).
We now explicitly list the exceptional cases: For expressions forkIO e we define:

ι(forkIO e) := (future ι(e)) >> return ()

The exceptional cases on the process level are

ι(⇐ e) := νx.x⇐ ι(e) and ι(
main⇐== e) := νx.x

main⇐== ι(e)

where for both cases, we assume that x is chosen (fresh) such that x does not
occur in ι(e). On types, the translation ι is the identity.

Proposition C.3. Assume that the countable infinite set of variables in CH is
VarCH and in CHF is VarCHF = VarCH∪Var ′ where VarCH∩Var ′ = ∅, Var ′ is
countably infinite and translation ι always uses a variable of Var ′ for translating

⇐ e or
main⇐== e. Then the translation ι is compositional, i.e. ι(C[e]) = ι(C)[ι(e)].

For analyzing the correspondence between the sr-reductions in CH and CHF
w.r.t. ι, an observation is that for all D ∈ PCtxtCH : ι(D) ∈ PCtxtCHF ; for all
M ∈ MCtxtCH : ι(M) ∈ MCtxtCHF ; for all E ∈ ECtxtCH : ι(E) ∈ ECtxtCHF ; and
for all F ∈ FCtxtCH : ι(F) ∈ FCtxtCHF . We analyze the sr-reduction w.r.t. ι.

50 M. Schmidt-Schauß and D. Sabel

Lemma C.4. Let P, P ′ be CH -processes with P
sr−→ P ′. Then either ι(P)

sr−→
ι(P ′) or ι(P)

sr,3−−→ ι(P ′) where in the latter case ι(P) ∼c ι(P ′).

Proof. We consider the different reduction rules. For rules (lunit), (tmvar), (pmvar),

(nmvar), and for all functional evaluations, we have: if P
sr−→ P then ι(P)

sr−→
ι(P ′). For (fork), let P = D[⇐M[forkIO e]]

sr−→ D[⇐M[return ()]|⇐ e] = P ′.
Then we can reduce ι(P) as follows:

ι(P) = ι(D)[νx.x⇐ future ι(e) >>=λ .return ()]
sr,fork−−−−−→ ι(D)[νx.νz.x⇐ return z >>=λ .return ()|z⇐ ι(e)]
sr,lunit−−−−−→ ι(D)[νx.νz.x⇐ (λ .return ()) z|z⇐ ι(e)]
sr,beta−−−−→ ι(D)[νx.νz.x⇐ return ())|z⇐ ι(e)] ≡ ι(P ′)

Theorem C.1 implies ι(P) = ι(P ′).

Lemma C.5. P ∈ ProcCH is successful iff ι(P) is successful.

Proof. If P ∈ ProcCH is successful, then P ≡ D[
main⇐== return ()] and ι(P) =

ι(D)[νx.x
main⇐== return ()]. If ι(P) is successful, then ι(P) = D[x

main⇐== return ()]
and thus P ≡ D′[⇐ return ()] for some D′ ∈ PCtxtCH .

Proposition C.6. Let P ∈ ProcCH such that P↓. Then ι(P)↓.

Proof. By induction on P
sr,∗−−→ P ′ where P ′ is successful. The base case holds

by Lemma C.5. For the induction step, let P
sr−→ P ′′

sr,∗−−→ P ′. The induction

hypothesis shows ι(P ′′)↓ and Lemma C.4 shows ι(P)
sr,∗−−→ ι(P ′′). Thus ι(P)↓.

Checking all cases of the standard reduction in CHF together with inspecting
the images of the translation ι shows:

Lemma C.7. Let P ∈ ProcCH , ι(P)
sr,a−−→ P ′, and a 6∈

{fork, unIO}. Then there exists P ′′ with P
sr−→ P ′′ such that

ι(P ′′) = P ′, i.e. the diagram shown on the right side holds.

P

sr,a

��

ι // ι(P)

sr,a

��
P ′′

ι
// P ′

Lemma C.8. Let P ∈ ProcCH such that ι(P)
sr,fork−−−−−→ P ′.

Then there exists a CH -process P ′′ where P
sr,fork−−−−−→ P ′′

and P ′
sr,∗−−→ ι(P ′′). The equivalence ι(P ′′) ∼c P ′ holds.

The diagram on the right hand side shows the given and
existentially quantified reductions and translations steps.

P
sr,a ��

ι // ι(P)
sr,a��

P ′′

ι ''

P ′

sr,∗��
ι(P ′′)

Proof. The (sr,fork)-step in CHF evaluates a future-operation that must stem
from translating a forkIO. Since ι(forkIO e) = future ι(e) >> return (), the

reduction ι(P)
sr,fork−−−−−→ P ′ can be extended by two reduction steps P ′

sr,lunit−−−−−→
· sr,beta−−−−→ P ′′′ such that P

sr,fork−−−−−→ P ′′ and ι(P ′′) = P ′′′. Since (sr,beta) and
(sr,fork) are correct in CHF (Proposition C.1), we have P ′′′ ∼c P ′′. ut

Embedding the Pi-Calculus into CH 51

The two reductions leading from P ′ to ι(P ′′) in the previous lemma, are cor-
rect program transformations, and they are deterministic for the corresponding
thread (i.e. for this thread, no other reduction is possible, even if other compo-
nents or threads change (for instance, the content of MVars). Thus, we can safely
add all the missing reduction steps corresponding to Lemma C.8 to a given se-

quence ι(P)
sr,∗−−→ P0 resulting in a sequence ι(P)

sr,∗−−→ P1 such that i) P0 ∼c P1

and ii) P1 is successful if P0 is successful.

Lemmas C.7 and C.8 do not cover the case where ι(P)
sr,unIO−−−−−→ P ′ for

some P ∈ ProcCH . In this case P = D[⇐ return ()] must hold, and ι(P) =

ι(D)[νx.x⇐ return ()]
sr,unIO−−−−−→ ι(D)[νx.x = ()]. Since future x cannot be used

in the context ι(D), it is irrelevant, if the (sr,unIO)-reduction is performed or is

not performed. I.e., given a sequence ι(P)
sr,∗−−→ P1, we can modify the sequence,

by removing all (sr,unIO)-reduction, resulting in a sequence ι(P)
sr,∗−−→ P2 such

that i) P1 ∼c P2 and ii) P1 is successful if and only if P2 is successful.

Definition C.9. Let Red = ι(P)
sr,∗−−→ P ′ be a CHF -standard reduction se-

quence for P ∈ ProcCH . We say that Red is ι-normalized if the two described
transformations on reduction sequences (adding reduction steps corresponding to
Lemma C.8 and removing (sr,unIO)-reductions) are not applicable to Red.

As argued above, the following lemma holds:

Lemma C.10. For every sequence ι(P)
sr,∗−−→ P ′ with P ∈ ProcCH , there exists

a ι-normalized reduction sequence ι(P)
sr,∗−−→ P ′′ such that i) P ′ ∼c P ′′ and ii)

P ′′ is successful if P ′ is successful.

Proposition C.11. Let P ∈ ProcCH and ι(P)↓. Then P↓.

Proof. Let ι(P)
sr,∗−−→ P0 where P0 is successful. By Lemma C.10 there exists a

ι-normalized reduction sequence ι(P)
sr,n−−→ P1 where P1 is successful and n ≥ 0.

By induction on n we show P ′↓. Lemma C.5 covers the case n = 0. If n > 0 then

ι(P)
sr,n−−→ P1. Since the given sequence is ι-normalized, we can either apply the

commutation diagram from Lemma C.7 or the diagram from Lemma C.8 to a

prefix of ι(P)
sr,n−−→ P1 such that P

sr−→ P ′′ and ι(P ′′)
sr,n′

−−−→ P0 where n′ < n and

ι(P ′′)
sr,n′

−−−→ P1 is ι-normalized and thus we can apply the induction hypothesis
which shows P ′′↓ and thus P↓. ut

By Propositions C.6 and C.11 we also have:

Corollary C.12. Let P ∈ ProcCH . Then ι(P)⇑ ⇐⇒ P⇑

Proposition C.13. Let P ∈ ProcCH such that P↑. Then ι(P)↑.

Proof. By induction on length n of a reduction P
sr,n−−→ P ′ where P ′⇑. Corol-

lary C.12 covers the base case. For the induction step, let P
sr−→ P ′′

sr,∗−−→ P ′.

The induction hypothesis shows ι(P ′′)↑, Lemma C.4 shows that ι(P)
sr,∗−−→ ι(P ′′),

and thus ι(P)↑. ut

52 M. Schmidt-Schauß and D. Sabel

Proposition C.14. Let P ∈ ProcCH and ι(P)↑. Then P↑.

Proof. Let ι(P)
sr,∗−−→ P0 where P0⇑. By Lemma C.10 there exists a ι-normalized

reduction sequence ι(P)
sr,n−−→ P1 where P1⇑ and n ≥ 0. We use induction on

n to show P↑. If n = 0, then Corollary C.12 shows that P⇑. If n > 0, then

ι(P)
sr,n−−→ P1. Since the sequence is ι-normalized, we can either apply the com-

mutation diagram from Lemma C.7 or the diagram from Lemma C.8 to a prefix

of ι(P)
sr,n−−→ P1 such that P

sr−→ P ′′ and ι(P ′′)
sr,n′

−−−→ P0 where n′ < n and also

ι(P ′′)
sr,n′

−−−→ P1 is ι-normalized and thus we can apply the induction hypothesis
which shows P ′′↑ and thus also P↑. ut

Propositions C.6, C.11, C.13 and C.14 show:

Theorem C.15. The translation ι is convergence equivalent.

Theorem C.16. The translation ι is adequate, i.e. for all processes P1, P2 ∈
ProcCH : ι(P1) ∼c ι(P2) =⇒ P1 ∼c P2 and for all expressions e1, e2 ∈ ExprCH :
ι(e1) ∼c ι(e2) =⇒ e1 ∼c e2.

Proof. This holds, since ι is compositional and convergence equivalent. We only
show the part for processes. Let ξ ∈ {↓,⇓}, (i, j) ∈ {(1, 2), (2, 1)}. Let ι(Pi) ∼c
ι(Pj) and D ∈ PCtxtCH such that D[Pi]ξ. Then ι(D[Pi]) = ι(D)[ι(Pi)] (since
ι is compositional) and thus ι(D)[ι(Pi)]ξ (since ι is convergence equivalent)s.
Since ι(Pi) ∼c ι(Pj), this implies ι(D)[ι(Pj)]ξ which implies ι(D[Pj])ξ (since ι is
compositional) and thus D[Pj]ξ (since ι is convergence equivalent). ut

Proposition 3.6. The transformations (lunit), (nmvar), (fork), (cpce), (mkbinds),
(beta), (case), (seq), (gc), (dtmvar), and (dpmvar) are correct in CH .

Proof. For all mentioned transformations η, we have: if P
η−→ P ′ then ι(P) ∼c

ι(P ′) by Proposition C.1, which implies P ∼c P by Theorem C.16. ut

D Barbed Convergence Testing and Equivalence

In [24], the following claim is proved, where σ are name-to-name substitutions:

Theorem D.1 ([24]). For all processes P,Q ∈ ΠStop:

– If for all σ,R: σ(P)|R ≤↓ σ(Q)|R, then P ≤c,↓ Q.
– If for all σ,R: σ(P)|R ≤↓ σ(Q)|R ∧ σ(P)|R ≤⇓ σ(Q)|R, then P ≤c Q.

Example D.2. We show the equivalence x(y).Stop|xz.Stop ∼c Stop. Clearly for
all σ and all processes R we have σ(Stop)|R is successful and thus σ(Stop)|R⇓
and σ(Stop)|R↓. We have that σ(x(y).Stop|xz.Stop)|R↓, since the process
reduces in one step to Stop|R. We observe that it is impossible to reduce
σ(x(y).Stop|xz.Stop)|R into a must-divergent process, since the process be-
comes successful if one of the components σ(x(y).Stop) or σ(xy.Stop) is part
of the redex, and otherwise (the interaction between these two processes is al-
ways possible). Thus, σ(x(y).Stop|xz.Stop)|R is must-convergent. Hence the
preconditions of Theorem D.1 hold and the equivalence holds.

Embedding the Pi-Calculus into CH 53

For stop-free processes, contextual equivalence coincides with so-called barbed
testing equivalence, where the observation is whether a process may- or should-
reduces to a process that has a free input on a fixed channel name (see [24]):

Definition D.3. Let Π be the subcalculus of ΠStop that does not have the con-
stant Stop as a syntactic construct. Processes, contexts, reduction, structural
congruences are accordingly adapted for Π.

Let P ∈ Π and x ∈ N . A process P has a barb on input x (written P �x) iff
P ≡ νX .(x(y)P ′|P ′′) where x 6∈ X . We write P �x iff there exists P ′ such that

P
sr,∗−−→ P ′ and P ′ �x. We write P ��x iff for all P ′ with P

sr,∗−−→ P ′ also P ′ �x
holds. We write P ��x iff P �x does not hold, and P �x iff P ��x does not hold.

For a name x ∈ N , barbed may- and should-testing preorder ≤c,barb and
barbed may- and should-testing equivalence ∼c,barb are defined as ≤c,barb :=
≤c,�x ∩ ≤c,��x and ∼c,barb := ≤c,barb ∩ (≤c,barb)−1 where for ξ ∈ {�x, ��x,�x, ��x}
and P,Q ∈ Π, P ≤c,ξ Q holds iff for all contexts C ∈ Π : C[P]ξ =⇒ C[Q]ξ.

Theorem D.4 ([24]). For all processes P,Q ∈ Π: P ≤c,barb Q ⇐⇒ P ≤c Q,
and hence also P ∼c,barb Q ⇐⇒ P ∼c Q.

	Embedding the Pi-Calculus into a Concurrent Functional Programming Language

