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GOETHE,

Ziele des Kapitels OVERS)

o Ubersicht iiber die Konstrukte von Haskell
o Ubersetzung der Konstrukte in KFPTSP+-seq

@ Programmierung in Haskell mit Datenstrukturen

Wir erdrtern nicht:

@ Die Ubersetzung von let und where, (umfangreich und wg.
rekursiven Bindungen)
Ubersetzung in KFPTSP+seq ist mdglich durch
Fixpunktkombinatoren

M. Schmidt-SchauB
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Zahlen in Haskell und KFPTSP+seq

Eingebaute Zahlen in Haskell ; Peano-Kodierung fiir KFPTSP+-seq

M. Schmidt-SchauB
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Haskell: Zahlen

Eingebaut:

Ganze Zahlen beschrankter GroBe: Int

o Ganze Zahlen beliebiger GroBe: Integer

@ Gleitkommazahlen: Float

@ Gleitkommazahlen mit doppelter Genauigkeit: Double
°

Rationale Zahlen: Rational
(verallgemeinert Ratio «, wobei
Rational = Ratio Integer)

M. Schmidt-SchauB



Arithmetische Operationen

ic|e

Rechenoperationen:
e + fiir die Addition
e - fiir die Subtraktion
@ * fiir die Multiplikation
@ / fiir die Division
@ mod , div

Die Operatoren sind iiberladen. Dafiir gibt es Typklassen.
Typvon (+) :: Num a => a -> a -> a

Genaue Behandlung von Typklassen: spater

M. Schmidt-SchauB



Prafix / Infix el

Anmerkung zum Minuszeichen:

@ Mehr Klammern als man denkt: 5 + -6 geht nicht,
richtig: 5 + (-6)
Das Zeichen — wird speziell (vom Parser) gehandhabt.

@ In Haskell kdnnen Prafix-Operatoren (Funktionen) auch infix
benutzt werden

@ mod 5 6 ; infix durch Hochkommata: 5 ‘mod‘ 6

@ Umgekehrt kénnen infix-Operatoren auch prafix benutzt
werden

@ 5 + 6 ; Prafix durch Einklammern: (+) 5 6

M. Schmidt-SchauB



Vergleichsoperatoren -

@ == fiir den Gleichheitstest
(==) :: (Eq a) => a -> a —> Bool

@ /= fiir den Ungleichheitstest

@ <, <=, >, >=, fiir kleiner, kleiner gleich, groBer
und groBer gleich
(der Typ ist (0rd a) => a -> a -> Bool).

M. Schmidt-SchauB



Assoziativitaten und Prioritaten

infixr 9

infixr 8 ~, 77, *x*

infixl 7 =*, /, ‘quot®, ‘rem‘, ‘div‘, ‘mod‘
infixl 6 +, -

-- The (:) operator is built-in syntax, and cannot
-- legally be given a fixity declaration; but its
-- fixity is given by:

- infixr 5

infix 4 ==, /=, <, <=, >=, >
infixr 3 &&

infixr 2 ||

infixl 1 >>, >>=

infixr 1 =<<

infixr 0 $, $!, ‘seq¢

M. Schmidt-SchauB



Darstellung von Zahlen in KFPTSP+seq o

FRANKFURT AM MAIN.

Mégliche Kodierung von Zahlen in KFPTSP+seq: Peano-Zahlen:

@ Peano-Zahlen sind aus Zero und (Succ Peano-Zahl)
aufgebaut

@ nach dem italienischen Mathematiker Guiseppe Peano
(1858-1932) benannt

data Pint = Zero | Succ Pint
deriving(Eq, Show)
Ubersetzung:

P(0) := Zero
P(n) :=Succ(P(n—1)) firn >0

Z.B. wird 3 dargestellt als Succ(Succ(Succ(Zero))).



Funktionen auf Peano-Zahlen v

istZahl :: Pint -> Bool
istZahl x = case x of
Zero -> True
(Succ y) -> istZahl y

: unendlich :: Pint
: unendlich = Succ unendlich

Addition:
r-—-—--—-—-"-"-""-""-""-""-""-""-""-""-""-""-""-""-"-"-"-"-""=-"-""""=""="="="="="="="="="="="="="=”"="-""”="-""=”"=-"="-"=-"=-=- |
peanoPlus :: Pint -> Pint -> Pint
where

Zero >y

! [

! |

: peanoPlus x y = if istZahl x && istZahl y then plus x y else boF

! |

|

! plus x y = case x of

. :

E Succ z -> Succ (plus z y) |
I

I I

M. Schmidt-SchauB



Funktionen auf Peano-Zahlen (2)

Multiplikation:
peanoMult :: Pint -> Pint -> Pint |
peanoMult x y = if istZahl x && istZahl y then mult x y else boft
where :
mult x y = case x of :
Zero -> Zero !
Succ z -> peanoPlus y (mult z y) E

M. Schmidt-SchauB



Funktionen auf Peano-Zahlen (2) con

Vergleiche:

peanoEq :: Pint -> Pint -> Bool :
peanoEq x y = if istZahl x &% distZahl y then eq x y else bot |
where |
eq Zero Zero = True |
eq (Succ x) (Succ y) =eqxy !
eq _ _ = False :

|

peanoleq :: Pint -> Pint -> Bool :
peanoleq x y = if istZahl x && istZahl y then leq x y else bot;
where |
leq Zero y = True }
leqg x Zero = False |
leq (Succ x) (Succ y) = leq x ¥y !

M. Schmidt-SchauB



Datentypen
GOETHE 35

UNIVERSITAT

Algebraische Datentypen in Haskell

Aufzdhlungstypen — Produkttypen — Parametrisierte Datentypen —
Rekursive Datentypen

M. Schmidt-SchauB



Datentypen

Aufzahlungstypen oERTs

Aufzdhlungstyp = Aufzdhlung verschiedener Werte

|
| data Typname = Konstantel | Konstante2 | | KonstanteN
L o o e e 22 |
Beispiele:
|\ --- - -"-"--"—-"-""=-""=-""=-""=-""=-""=-""=-""="-""=-""=""="""=""=”""=”""=”""“""="="="="=""“"“"“"“"“"“"“*"”7*¥°”7*¥"¥“”7*¥%”*"7”"7*¥"'7”"¥7$TV¥%¥-"7=7"/¥%7=-¥¥%7=/=-¥%7/”"=-" = 1
data Bool = True | False

|
|
|
Montag | Dienstag | Mittwoch | Donnerstag !
Freitag | Samstag | Sonntag !

|

|

Q
o
[a]
a1
<
o
2]
(0]
~
wm
=3
o
=
~ —

deriving(Show) erzeugt Instanz der Typklasse Show, damit der
Datentyp angezeigt werden kann.

M. Schmidt-SchauB



Datentypen

Aufzdhlungstypen (2) -

| istMontag :: Wochentag -> Bool |
| istMontag x = case x of |
: Montag -> True :
[ Dienstag -> False \
: Mittwoch -> False l
| Donnerstag -> False |
| Freitag -> False |
| Samstag -> False |
! Sonntag -> False !

In Haskell erlaubt (in KFPTSP+seq nicht):

| 1
|

| istMontag’ :: Wochentag -> Bool
: istMontag’ x = case x of

\ Montag -> True
| y -> False
|

Ubersetzung: Aus istMontag’ wird istMontag

M. Schmidt-SchauB



Datentypen

Aufzahlungstypen (3) :

In Haskell:
Pattern-matching in den linken Seiten der SK-Definition:

: istMontag’’ :: Wochentag -> Bool :
| istMontag’’ Montag = True
: istMontag’’ _ = False

I

Ubersetzung: Erzeuge case-Ausdruck

istMontag’’ xs = case xs of
Montag -> True

I
I
I
I
: -> False

M. Schmidt-SchauB



Datentypen

Produkttypen g

Produkttyp = Zusammenfassung verschiedener Werte in ein
Objekt

Bekanntes Beispiel: Tupel

data Student = Student

l :
! |
: String -- Name !
| String -- Vorname !
E Int -- Matrikelnummer |

M. Schmidt-SchauB



Datentypen

Produkttypen (2) S
o
| setzeName :: Student -> String -> Student
| setzeName x name’ =

(Student name vorname mnr)

|
|
|
|
|
|
case x of |
|
|
|
-> Student name’ vorname mnr

! setzeName :: Student -> String -> Student
| setzeName (Student name vorname mnr) name’ =
| Student name’ vorname mnr |

M. Schmidt-SchauB



Datentypen

Produkttypen und Aufzahlungstypen ol

FRANKFURT AM MAIN.

Man kann beides mischen:

| data DreiDObjekt =

| Wuerfel Int

i | Quader Int Int Int
} | Kugel Int

|

o o —  — — — — — — — — o

wobei Konsdef1l ... Konsdefn Konstruktor-Definition mit
Argument-Typen sind (z.B. Produkttypen)

M. Schmidt-SchauB



Datentypen

........

Record-Syntax: Einfiihrung e

data Student = Student

|

|
String -- Vorname i
String -- Name !
Int -- Matrikelnummer

Nachteil
Nur die Kommentare verraten, was die Komponenten darstellen.

AuBerdem miihsam: Zugriffsfunktionen erstellen:

vorname :: Student -> String
vorname (Student vorname name mnr) = vorname

M. Schmidt-SchauB



Datentypen

........

Record-Syntax: Einfiihrung (2) o

Anderung am Datentyp:

|

| |
| |
| String -- Vorname i
1 String -- Name !
i Int -- Matrikelnummer
5 |
! Int -- Hochschulsemester

I vorname :: Student -> String }
|

| vorname (Student vorname name mnr hsem) = vorname }
|

Abhilfe in diesem Aspekt ist die Record-Syntax

M. Schmidt-SchauB



Datentypen

Record-Syntax in Haskell e
Student mit Record-Syntax:
data Student = Student {
vorname :: String,

| |

| |

| |

| 1
o |

| name :: String,

1 matrikelnummer :: Int

|

| |

| |

= Die Komponenten werden mit Namen markiert

M. Schmidt-SchauB



Datentypen

Beispiel -

Beispiel: Student "Hans" "Mueller" 1234567

kann man schreiben als

Reihenfolge der Komponenten egal:

Prelude> let x = Student{matrikelnummer=1234567,
vorname="Hans", name="Mueller"}

M. Schmidt-SchauB



Datentypen

Record-Syntax DR

Zugriffsfunktionen sind automatisch verfiigbar, z.B.

Prelude> matrikelnummer x [ﬂ
1234567

@ Record-Syntax ist in den Pattern erlaubt

@ Nicht alle Felder miissen abgedeckt werden bei Erweiterung
____der_Datenstrukturen. daher kein_Problem________________
i nachnameMitA Student{nachname = ’A’:xs} = True

| nachnameMitA _ = False

M. Schmidt-SchauB



Datentypen

Record-Syntax S

Zugriffsfunktionen sind automatisch verfiigbar, z.B.

Prelude> matrikelnummer x [ﬂ
1234567

@ Record-Syntax ist in den Pattern erlaubt
@ Nicht alle Felder miissen abgedeckt werden bei Erweiterung
____der Datenstrukturen. daher kein Problem________________

i nachnameMitA Student{nachname = ’A’:xs} = True

| nachnameMitA _ = False

Ubersetzung in KFPTSP+seq:
Normale Datentypen verwenden
und Zugriffsfunktionen erzeugen

M. Schmidt-SchauB



Datentypen

Record-Syntax: Update i

|

! setzeName :: Student -> String -> Student
i setzeName student neuername =
|
|
|

student {name = neuername}

matrikelnummer = matrikelnummer student}

I
. setzeName :: Student -> Strlng -> Student
| setzeName student neuername = |
I
! Student {vorname = vorname student,

I
| name = neuername, !
: |
I

M. Schmidt-SchauB



Parametrisierte Datentypen -

Datentypen in Haskell diirfen polymorph parametrisiert sein:

____________________________________________________

Maybe ist polymorph iiber a  (der Parameter ist a)

M. Schmidt-SchauB



Datentypen

Parametrisierte Datentypen e

.......

Datentypen in Haskell diirfen polymorph parametrisiert sein:

____________________________________________________

Maybe ist polymorph iiber a  (der Parameter ist a)

Beispiel fiir Maybe-Verwendung:

i safeHead :: [a]l -> Maybe a

| safeHead xs = case xs of

! 1 - Nothing
i (y:ys) => Just y

M. Schmidt-SchauB



Datentypen

GOETHE,

Rekursive Datentypen e

........

Rekursive Datentypen:
Der definierte Typ kommt rechts vom = wieder vor

M. Schmidt-SchauB



Datentypen

Haskell: Geschachtelte Pattern Sl

|
| viertesElement (x1:(x2:(x3:(x4:xs)))) = Just x4
| viertesElement _ = Nothing

Ubersetzung in KFPTSP+seq muss geschachtelte case-Ausdriicke
einfiihren:

viertesElement ys = case ys of
[1 -> Nothing
(x1l:ys8’) ->
case ys’ of
[1 -> Nothing
(x2:y8°7) —>
case ys’’ of
[1 -> Nothing
(x3:y8°77) —>
case ys’’’ of
[1 -> Nothing
(x4:x8) -> Just x4

M. Schmidt-SchauB



GOETHE, !g

UNIVERSITAT

Rekursive Datenstrukturen: Listen

Listenfunktionen — Listen als Stréme — List Comprehensions

M. Schmidt-SchauB



Listen von Zahlen -

Haskell: spezielle Syntax

@ [startwert..endwert]
erzeugt: Liste der Zahlen von startwert bis endwert

z.B. ergibt [10..15]die Liste [10,11,12,13,14,15].

M. Schmidt-SchauB
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Listen von Zahlen

Haskell: spezielle Syntax

@ [startwert..endwert]
erzeugt: Liste der Zahlen von startwert bis endwert

z.B. ergibt [10..15]die Liste [10,11,12,13,14,15].

o [startwert..]
erzeugt: unendliche Liste ab dem startwert

z.B. erzeugt [1..]die Liste aller natiirlichen Zahlen.

M. Schmidt-SchauB



Listen von Zahlen (2)

@ [startwert,naechsterWert..endwert]

erzeugt:

[startwert,startWert+delta,startWert+2delta,...,endwert]
wobei delta=naechsterWert - startWert

Z.B. ergibt: [10,12..20]die Liste [10,12,14,16,18,20].

M. Schmidt-SchauB



Listen von Zahlen (2) o

@ [startwert,naechsterWert..endwert]

erzeugt:

[startwert,startWert+delta,startWert+2delta,...,endwert]
wobei delta=naechsterWert - startWert

Z.B. ergibt: [10,12..20]die Liste [10,12,14,16,18,20].

@ [startWert,naechsterWert..]

erzeugt: die unendlich lange Liste mit der Schrittweite
naechsterWert - startWert.

z.B. [2,4. .]ergibt Liste aller geraden natiirlichen Zahlen

M. Schmidt-SchauB



Listen von Zahlen (3) S

Syntaktischer Zucker: es sind normale Funktionen fiir
den Datentyp List Integer:

from :: Integer -> [Integer]
from start = start:(from (start+1))

fromTo :: Integer -> Integer -> [Integer]
fromTo start end
| start > end =[]

| otherwise = start: (fromTo (start+1) end)

fromThen :: Integer -> Integer -> [Integer]
fromThen start next = start:(fromThen next (2*next - start))

fromThenTo :: Integer -> Integer -> Integer -> [Integer]
fromThenTo start next end

| start > end = []

| otherwise = start:(fromThenTo next (2*next - start) end)

M. Schmidt-SchauB



Guards T

f patl ... patn
| guardl = el
I

| guardn = en

@ Dabei: guardl bis guardn sind Boolesche Ausdriicke, die die
Variablen der Pattern pati,...,patn benutzen diirfen.

@ Auswertung von oben nach unten
@ erster Guard der zu True auswertet bestimmt Wert.

@ otherwise = True ist vordefiniert

M. Schmidt-SchauB



Ubersetzung von Guards in KFPTSP+seq ST

f patl ... patn
| guardl = el
I

| guardn = en
ergibt (if-then-else muss noch iibersetzt werden):

f patl ... patn =
if guardl then el else
if guard2 then e2 else

if guardn then en else s

Wobei s = bot, wenn keine weitere Funktionsdefinition fiir £
kommt, anderenfalls ist s die Ubersetzung anderer
Definitionsgleichungen.

M. Schmidt-SchauB



Beispiel -

P f (x:xs) E
E | x < 10 = True :
: | x > 100 = True |
E f ys = False E

Die korrekte Ubersetzung in KFPTSP+seq (mit if-then else),
unter der Annahme dass es Peano-Zahlen sind, ist:

f = case x of {
Nil -> False;
(x:x8) -> if x < 10 then True else
if x > 100 then True else False

M. Schmidt-SchauB



Zeichen und Zeichenketten -

@ Eingebauter Typ Char fiir Zeichen

@ Darstellung: Einfaches Anfiihrungszeichen, z.B. ’A’
@ Steuersymbole beginnen mit \, z.B. \n, \t
@ Spezialsymbole \\ und \"

M. Schmidt-SchauB



GOETHE,

Zeichen und Zeichenketten e

........

@ Eingebauter Typ Char fiir Zeichen
@ Darstellung: Einfaches Anfiihrungszeichen, z.B. ’A’
@ Steuersymbole beginnen mit \, z.B. \n, \t
@ Spezialsymbole \\ und \"
Strings
e Vom Typ String = [Char]
@ Sind Listen von Zeichen

@ Spezialsyntax "Hallo" ist gleich zu
[;H) s ’a’,’l’ ’)1;,)07] bZW.

H:(Ca’: (017 (1 : (o’ [1)))).

M. Schmidt-SchauB



Zeichen und Zeichenketten (2)

@ Nitzliche Funktionen fiir Char: In der Bibliothek Data.Char

ord :: Char -> Int
chr :: Int -> Char

isLower :: Char -> Bool
isUpper :: Char -> Bool
isAlpha :: Char -> Bool

toUpper :: Char -> Char
toLower :: Char -> Char

M. Schmidt-SchauB
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Standard-Listenfunktionen

Einige vordefinierte Listenfunktionen, fast alle in Data.List

M. Schmidt-SchauB



Standard-Listenfunktionen (1) sorrue G

FRANKFURT AM MAIN.

++, Listen zusammenhangen, (auch append genannt)

|

L (++) 12 [a]l > [a] —> [a] |
s ++ ys = ys |
! (x:x8) ++ ys = x:(xs ++ ys) !

Beispiele:

*> [[1..10] ++ [100..109]
[1,2,3,4,5,6,7,8,9,10,100,101,102,103,104,105,106,107,108,109]
*> [[1,2],[2,3]]1 ++ [[3,4,51] [&]

[[1,2],[2,3],[3,4,5]]

*> "Infor" ++ "matik" [g

"Informatik"

Laufzeitverhalten: linear in der Lange der ersten Liste

M. Schmidt-SchauB



Standard-Listenfunktionen (2) come @

Zugriff auf Listenelement per Index: !!

____________________________________________________

L (1) :: [a] -> Int -> a :
v [ 'l _ = error "Index too large" 1
| (x:xs) !1 0 =x |
|o(x:xs) 11 i=xs ! (i-1) !
L e e e e e e e e mmmm— ]
Beispiele:

*> [1,2,3,4,5]!!3

4

*> [0,1,2,3,4,5]!!3[3

3

*> [0,1,2,3,4,5]!!5[3

5

*> [1,2,3,4,5]!!5

x** Exception: Prelude.(!!): index too large

M. Schmidt-SchauB



. N e MG RS OUUl  Listenfunktionen Strme Weitere List Comprehensions
Standard-Listenfunktionen (3) sorrue G

FRANKFURT AM MAIN.

Index eines Elements berechnen: elemIndex

| elemIndex :: (Eq a) => a -> [a] -> Maybe Int |
| elemIndex a xs = findInd 0 a xs |
| where :
| findInd i a [] = Nothing |
| findInd i a (x:xs)

! | a==x = Just i

| | otherwise = findInd (i+1) a xs |

Beispiele:

*> elemIndex 1 [1,2,3]
Just O

*> elemIndex 1 [0,1,2,3]Ez§1
Just 1

*> elemIndex 1 [5,4,3,2][321
Nothing

*> elemIndex 1 [1,4,1,2]
Just O

M. Schmidt-SchauB




Standard-Listenfunktionen (4) sorrue G

FRANKFURT AM MAIN.

Map: Funktion auf Listenelemente anwenden

1 map :: (a -> b) -> [a] -> [b] }

| map f [] =[] |

| map f (x:xs) = (f x):(map f xs) \
|

Beispiele:

*> map (x3) [1..20] [ﬂ
[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60]
*> map not [True,False,False,True] [ﬂ
[False,True,True,False]

*> map ("2) [1..10] [ﬂ

[1,4,9,16,25,36,49,64,81,100]

*> map toUpper "Informatik"

"INFORMATIK"

M. Schmidt-SchauB



Standard-Listenfunktionen (5)

FRANKFURT AM

Filter: Elemente heraus filtern (aus Listen)

filter :: (a -> Bool) -> [a] -> [a]
filter £ [1 = []

filter f (x:xs)

| £ x x:(filter f xs)

| otherwise = filter f xs

Beispiele:

M. Schmidt-SchauB

*> filter (> 15) [10..20]
[16,17,18,19,20]

x> filter isAlpha "2017 Informatik 2017"
"Informatik"

*> filter (\x -> x > 5) [1..10]
[6,7,8,9,10]




Standard-Listenfunktionen (6) sorrue G

FRANKFURT AM MAIN.

Siehe auch Data.List
Analog zu filter: delete: Ein Listenelement iiberall entfernen

| delete x [] =0
| delete x (y:ys) = if x == y then ys else delete x ys
L e e e e e e e e e mmm—— ]

Mengendifferenz bilden:

*>[1,2,3,4,5,6,7] \\ [5,4,3]
[1’2’6,7]

Der Kompositionsoperator (.) ist definiert als:

Weitere Funktion:

*> nub [1,2,3,4,3,2,1,2,4,3,5]
[1,2,3,4,5]

M. Schmidt-SchauB



Standard-Listenfunktionen (7) gop

Length: Lange einer Liste

__________________________________________________ ‘
| length :: [a] -> Int !
| length [1 = 0 |
| length (_:xs) = 1+(length xs) \

|

Beispiele:

*> length "Informatik"
10

*> length [2..20002]
20001

*> length [1..]

“CInterrupted

M. Schmidt-SchauB



Standard-Listenfunktionen (8)

Length: Bessere Variante (konstanter Platz)

length :: [a] -> Int
length xs = length_it xs O

|
I
]
|
I
length_it [] acc = acc
length_it (_:xs) acc = let acc’ = l+acc :

|

|

in seq acc’ (length_it xs acc’)

M. Schmidt-SchauB



Standard-Listenfunktionen (9)

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

| reversel :: [a] -> [a] |
! reversel [] = [] :
! reversel (x:xs) = (reversel xs) ++ [x] !

M. Schmidt-SchauB



Standard-Listenfunktionen (9)

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

| reversel :: [a] -> [a] |
! reversel [] = [] :
! reversel (x:xs) = (reversel xs) ++ [x] !

rev (x:xs) acc = rev xs (x:acc)

| reverse :: [a] -> [a] |
| reverse Xs = rev xs [1 :
! where rev [] acc = acc !
! |

M. Schmidt-SchauB



Standard-Listenfunktionen (9)

GOETHE, g

UNIVERSITAT
FRANKFURT AM MAIN.

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

| reversel :: [a]l —> [a]
! reversel [] = []
! reversel (x:xs) = (reversel xs) ++ [x]

| reverse :: [a] -> [a]
| reverse xs = rev xs []
where rev [] acc = acc

|
|
|
| rev (x:xs) acc = rev xs (x:acc)

*> reverse [1..10]
[10,9,8,7,6,5,4,3,2,1

*> reverse "RELIEFPFEILER"
"RELIEFPFEILER"

*> reverse [1..] [g

“C Interrupted




.......

Standard-Listenfunktionen (10) ot

Repeat und Replicate

repeat :: a -> [al
repeat x = x:(repeat x)

replicate :: Int -> a -> [a]
replicate 0 x = []
replicate i x = x:(replicate (i-1) x)

*> repeat 1[%9 i
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,"ClInterrupted I
*> replicate 10 [1,2] [+
[(f1,21,01,21,01,2],[1,2],(1,2],[1,2],[1,2],[1,2],[1,2],[1,2]]
*> replicate 20 ’A’ [«

"AAAAAAAAAAAAAAAAAAAAY :
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Standard-Listenfunktionen (11) e

Take und Drop: n Elemente nehmen / verwerfen
e
| take :: Int -> [a] —> [al
! take i [] = []

| take 0 xs = []

! take i (x:xs)
|

|

|

|

|

|

|

x: (take (i-1) xs)

drop i [] = [

drop 0 xs = X8

drop i (x:xs) = drop (i-1) xs
L e e e - 1
Beispiele:

*> take 10 [1..]1[&
[1,2,3,4,5,6,7,8,9,10]
*> drop 5 "Informatik"

"matik"
*> take 5 (drop 3 [1..]) [ﬂ
[4,5,6,7,8]
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Standard-Listenfunktionen (12) sorrue G

TakeWhile und DropWhile

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [1 = []
takeWhile p (x:xs)

| px = x:(takeWhile p xs)

| otherwise [1

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [1 = [I
dropWhile p (x:xs)

| px = dropWhile p xs

| otherwise = x:xs

*> takeWhile (> 5) [5,6,7,3,6,7,8] [Q
[1

*> takeWhile (> 5) [7,6,7,3,6,7,8][321
[7,6,7]

*> dropWhile (< 10) [1..20] [<]
[10,11,12,13,14,15,16,17,18, 19 ,20]
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Standard-Listenfunktionen (13) sorrue G

FRANKFURT AM MAIN.

Zip und Unzip
zip :: [a] -> [b] > [(a,b)]
zip [1 ys =[]
zip xs [1 = []
zip (x:xs) (y:ys) = (x,y):(zip xs ys)

unzip :: [(a, b)] -> ([al, [bl)

unzip [1 = ([1,[D)

unzip ((x,y):xs) = let (xs’,ys’) = unzip xs
in (x:xs’,y:ys’)

Beispiele:

*> zip [1..10] "Informatik"
[(1,°1°),(2,’n?),(3,’£?),(4,707),(5,’r?),
(6,’m’),(7,%a’),(8,°t?),(9,’i’),(10,°k?)]

*> unzip [(1,°I%),(2,’n’),(3,’f’),(4,’0°),(5,°r’),
(6,’m’),(7,%a’),(8,’t’),(9,’i’), (10, °k*)]
([1,2,3,4,5,6,7,8,9,10],"Informatik")
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Standard-Listenfunktionen (14)

Bemerkung zu zip:

Man kann zwar zip3, zip4 etc. definieren um 3, 4, ..., Listen in
3-Tupel, 4-Tupel, etc. einzupacken, aber:

Man kann keine Funktion zipN fiir n Listen definieren, wobei n ein
Argument ist.
Grund: diese Funktion ware nicht getypt.
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Standard-Listenfunktionen (15) :

Verallgemeinerung von zip und map:
.
! zipWith :: (a -> b -> ¢) -> [a]l-> [b] -> [c] |
| zipWith f (x:xs8) (y:ys) = (f x y) : (zipWith f xs ys) |
1 zipWith _ _ =0 :
I

vectorAdd :: (Num a) => [a] -> [a] -> [a]
vectorAdd = zipWith (+)
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Standard-Listenfunktionen (16) sorrue G

FRANKFURT AM MAIN.

Die Fold-Funktionen:
@ foldl ® e [ay,...,a,] ergibt (... ((e®a1) ®az)...)®ay,
e foldr ® e [ay,...,a,] ergibt a1 ® (a2 @ (... ® (a, ®e)...))

Implementierung;:
foldl :: (a->b ->a) ->a -> [b] -> a
foldl f e [] = e
foldl f e (x:xs) foldl f (e ‘f¢ x) xs

foldr :: (a => b
foldr f e []
foldr f e (x:xs)

>b) >b ->[a] > b
e
x ‘f¢ (foldr f e xs)

foldl und foldr sind identisch, wenn die Elemente und der Operator
® assoziativ mit neutralem Element e ist.
Fiir endliche Listen, in Bezug auf den berechneten Wert.
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Standard-Listenfunktionen (17)

concat :: [[al] -> [a]
concat = foldr (++) []

S
| sum = foldl (+) 0
! product = foldl (*) 1

B e e
! foldl’ :: (a ->b ->a) ->a > [b] > a

! foldl’ f e [] =e

I foldl’ f e (x:xs) = let e’ = e ‘f¢ x in e’ ‘seq‘ foldl’ f e’ xs|
I
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Standard-Listenfunktionen (18)

Beachte die Allgemeinheit der Typen von foldl / foldr

foldl :: (a ->b ->a) ->a -> [b] > a

foldr :: (a->b ->b) ->b -> [a] -=> Db

Hh
o
[}
o
=
~
>
M
Y
i
o
|
v
Lol
v
&
&
~
[}
o
o
fal
o
A
2
—
H
=
®

xa und xb haben verschiedene Typen!

Analog mit foldr:

h
o
=
o
H
~
-
»
v
al
o’
1
v
~
o
o
o
»
N
g
&
&
al
o'
o
._]
H
[
[0]
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Standard-Listenfunktionen (19) ;

Varianten von foldl, foldr:

| |
. foldri it (a->a->a) -> [a] > a
i foldrl _ [] = error "foldrl on an empty list" !
: foldrl _ [x] = x |
I
I foldrl f (x:xs) = f x (foldrl f xs) I
I I
I I
| foldll it (@a->a->a) -> [a]l -> a |
| foldll £ (x:xs) = foldl f x xs !
i foldll _ [] = error "foldll on an empty list" !
L e e e e e 1
Beispiele
| o e
maximum :: (Ord a) => [a] -> a

maximum xs = foldll max xs

minimum :: (Ord a) => [a] -> a
minimum xs = foldll min xs
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Standard-Listenfunktionen (20)

Scanl, Scanr: Zwischenergebnisse von foldl, foldr
@ scanl ® e [a1,az,....,a,] =[e,e®ay, (e®ar)Ray,...]

@ scanr ® e [a1,a2,....ay] =] ..,0p—1 ® (ay, ®€),a, X e,€]

Es gilt:

@ last (scanl f e xs)

foldl f e xs
foldr f e xs.

@ head (scanr f e xs)
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Standard-Listenfunktionen (21) o
scanl :: (a -> b -> a) -> a -> [b] -> [a] :
scanl f e xs = e:(case xs of

0-> 1

(y:ys) -> scanl £ (e ‘f¢ y) ys)

scanr :: (a -> b ->b) -> b -> [a] -> [b]
scanr _ e [] = [e]
scanr f e (x:xs) = fxq:gs
where qs@(q:_) = scanr f e xs

Anmerkung: “As"’-Pattern Var@Pat

*> scanr (++) [] [[1,2]1,[3,4],(5,6],[7,8]] [Q
[[1,2,3,4,5,6,7,81,[3,4,5,6,7,8],[5,6,7,8],[7,8],[1]
*> scanl (++) [1 [[1,2]1,[3,41,(5,6],[7,8]] [ﬂ

[0, rt,21,r0t,2,3,41,11,2,3,4,5,61,[1,2,3,4,5,6,7,8]]
*> scanl (+) 0 [1..10]
[0,1,3,6,10,15,21,28,36,45,55]

*> scanr (+) 0 [1..10]
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Standard-Listenfunktionen (22)

Beispiele zur Verwendung von scan:

Fakultatsfolge:

*> take b faks [«
[1,1,2,6,24,120
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Standard-Listenfunktionen (22)

Beispiele zur Verwendung von scan:

Fakultatsfolge:

*> take b faks [«
[1,1,2,6,24,120

Funktion, die alle Restlisten einer Liste berechnet:

[[1’2’3]’[2’3]’[3 s ]]

*> tails [1,2,3] [« ’
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Standard-Listenfunktionen (22b)

Funktionen, die alle Anfangslisten einer Liste berechnen:

n
:
[}
~
~
o]
N
v
]
+
+
—
<
—
~
—
—
—
=
-
o
o
—

e Fragen dazu: sind die genau gleich?

° welche ist wann besser?
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Standard-Listenfunktionen (23) e

Partitionieren einer Liste

| partition :: (a -> Bool) -> [a] -> ([a], [al)
| partition p [1 = ([1,[1)

| partition p (x:xs)

! | p x = (x:r1,r2)
: | otherwise = (rl,x:r2)

: where (rl,r2) = partition p xs

! quicksort :: (Ord a) => [a] -> [a]

| quicksort [1 = []

I quicksort [x] = [x]

| quicksort (x:xs) = let (kleiner,groesser) = partition (<x) xs
| in quicksort kleiner ++ (x:(quicksort groesser))
|
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Listen als Strome (1)

@ Listen in Haskell kdnnen unendlich lang sein

@ Daher kann man Listen auch als Strome auffassen

@ Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerit)
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Listen als Strome (1) S
@ Listen in Haskell kénnen unendlich lang sein
@ Daher kann man Listen auch als Strome auffassen

@ Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerit)

Bei der Stromverarbeitung muss man beachten:

Nie versuchen die gesamte Liste auszuwerten oder nur einen
Wert fiir den ganzen Strom zu berechnen.

D.h. Funktionen auf Strémen sollten strom-produzierend sein.
Grobe Regel: Funktion £ :: [Int]->[Int] ist
strom-produzierend, wenn take n (f list)

fiir jede unendliche Liste und jedes n terminiert
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Listen als Strome (1) S

@ Listen in Haskell kdnnen unendlich lang sein

@ Daher kann man Listen auch als Strome auffassen

@ Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerit)

@ Bei der Stromverarbeitung muss man beachten:
Nie versuchen die gesamte Liste auszuwerten oder nur einen
Wert fiir den ganzen Strom zu berechnen.

@ D.h. Funktionen auf Strémen sollten strom-produzierend sein.

@ Grobe Regel: Funktion £ ::[Int]->[Int] ist
strom-produzierend, wenn take n (f list)
fiir jede unendliche Liste und jedes n terminiert

@ Ungeeignet daher: reverse, length, foldl,
@ Geeignet: map, filter, zipWith, take, drop
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Listen als Strome (2) coerue B

UNIVERSITAT

Einige Stromfunktionen fiir Strings:
@ words :: String -> [String]
Zerlegen einer Zeichenkette in eine Liste von Wortern

@ lines :: String -> [String]
Zerlegen einer Zeichenkette in eine Liste der Zeilen

@ unlines :: [String] -> String
Einzelne Zeilen in einer Liste zu einem String zusammenfiigen
(mit Zeilenumbriichen)
Beispiele:

*> words "Haskell ist eine funktionale Programmiersprache" |
["Haskell","ist","eine","funktionale“,"Programmiersprache“]_-‘
*> lines "1234\n5678\n90"

["1234","5678","90"]

*> unlines ["1234","5678","90"] "1234\n5678\n90\n"
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Listen als Strome (2) ot

........

Mischen zweier sortierter Strome zu einem sortierten Strom

| merge :: (Ord t) => [t] -> [t] -> [t]
| merge [J ys = ys

| merge xs [1 =zxs

| merge a@(x:xs) be(y:ys)

! | x <=y = x:merge xs b

: | otherwise = y:merge a ys

Beispiel:

*> merge [1,3,5,6,7,9] [2,3,4,5,6] =
[1,2’3’3,4’5’5,6,6’7,9]
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Listen als Strome (3) S

Doppelte Elemente entfernen

nub xs = nub’ xs []
where
nub’ [] _ =0

nub’ (x:xs) seen
| x ‘elem‘ seen = nub’ xs seen
| otherwise = x : nub’ xs (x:seen)

Anmerkungen:
@ seen merkt sich die bereits gesehenen Elemente
@ Laufzeit von nub ist quadratisch
(kann verbessert werden zu O(nlog(n)) z.B. bei Zahlen).

elem e [] = False |
elem e (x:xs)
| e ==x = True |
| otherwise = elem e xs }
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Listen als Strome (4)

Doppelte Elemente aus sortierter Liste entfernen:

nubSorted (x:y:xs)

| x ==y = nubSorted (y:xs)

| otherwise = x:(nubSorted (y:xs))
nubSorted y = y

ist linear in der Lange der Liste.
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Listen als Strome (5)

ic|e

Mischen der Vielfachen von 3,5 und 7:

*> nubSorted $ merge (map (3x) [1..])
*> (merge (map (5%) [1..1) (map (7%) [1..1)) [=]
[(3,5,6,7,9,10,12,14,15,18,20, ..
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Listen als Worterbuch

Lookup
E lookup :: (Eq a) => a -> [(a,b)] -> Maybe b :
i lookup key [] = Nothing \
E lookup key ((x,y):xys) |
| key == x = Just y !
| |
| | otherwise = lookup key xys !
b e e e e 1
Beispiele:

*> lookup 5 [(1,°A’), (2,°B’), (4,°C’), (5,’F)]
Just °F’
*> lookup 3 [(1,’A’), (2,’B’), (4,°C’), (5,’F’)]
Nothing
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Listen als Mengen (1) el

Any und All: Wie Quantoren

i any _ [] = False all _ [] = True :
I any p (x:xs) all p (x:xs) |
Lo (p x) = True | (p %) = all xs |
| | otherwise = any xs | otherwise = False !
! 1
Beispiele:

*> all even [1,2,3,4]

False

x> all even [2,4]

True

x> any even [1,2,3,4]

True

Nur bedingt als Stromfunktionen geeignet.
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Listen als Mengen (2)

Delete: Léschen eines Elements

delete :: (Eq a) => a -> [a] -> [al] |

delete e (x:xs8) :
| e ==x = xs :
| otherwise = x:(delete e xs) |

! |
1 A\\) :: (Eq a) => [a] -> [a] -> [a] !
' (\\) = foldl (flip delete) !
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Listen als Mengen (2b)

Beispiele:
x> delete 3 [1,2,3,4,5,3,4,3] [@
[1,2,4,5,3,4,3]
*> [1,2,3,4,41 \\ [9,6,4,4,3,1]
[2]
*> [1,2,3,4] \\ [9,6,4,4,3,1] [&]
[2]
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intersect xs ys = filter (\y -> any (== y) ys) xs

Listen als Mengen (3) S

Vereinigung und Schnitt

|\ - - - - - - -"-"-"-"-"-"-"-"=-"-"=-""-""=-""=-""”-""=-""-"=""="=""="“"~"="~”"“"~"*"”"”*"”>"°¥>°*~*"**"**">"°*"*~*"~*"“~7*"=~”"=-”"=- = hl
| union :: (Eq a) => [a] -> [a] -> [a] :
! union xs ys = xs ++ (ys \\ xs) }
|

| |
| intersect :: (Eq a) => [a] -> [a] -> [a] i
|

| |
| |

*> union [1,2,3,4,4] [9,6,4,3,1] []
[1,2,3,4,4,9,6]

*> union [1,2,3,4,4] [9,6,4,4,3,1] [Q
[1,2,3,4,4,9,6]

*> union [1,2,3,4,4] [9,9,6,4,4,3,1]
[1,2,3,4,4,9,6]

x> intersect [1,2,3,4,4] [4,4]

[4,4]
*> intersect [1,2,3,4] [4,4]
(4l -
*> intersect [1,2,3,4,4] [4]
[4,4]

M. Schmidt-SchauB



GOETHE,

Listen als Mengen (4) o

........

Vereinigung und Schnitt
@ Mengenoperationen sind schneller wenn:

e man eine lineare Ordnung auf den Elementen hat
e und sortierte Listen verarbeitet.

@ Mengenoperationen auf Mengen als Bdume ... (wie DB)

@ Nachschauen in Data.List
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ConcatMap o

Konkatiniert die Ergebnislisten: ConcatMap
___________________________________________________ ‘
concatMap :: (a -> [b]) -> [a]l -> [b] |
concatMap f = concat . map f !

*> concatMap (\x-> take x [1..]) [3..7]
[1’2’3’1,2’3’4,1,2’3,4,5’1’2’3,4’5’6,1,2’3,4,5’6’7]
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List Comprehensions g

@ Spezielle Syntax zur Erzeugung und Verarbeitung von Listen

e ZF-Ausdriicke (nach der Zermelo-Frankel Mengenlehre)
Syntax: [Expr | quall,...,qualn]

e Expr: ein Ausdruck
e F'V(Expr) sind durch quall,...,qualn gebunden
e quali ist:

@ ein Generator der Form pat <- Expr, oder

@ ein Guard, d.h. ein Ausdruck booleschen Typs,

@ oder eine Deklaration lokaler Bindungen der Form
let x1=el,...,xn=en (ohne in-Ausdruck!) ist.
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List Comprehensions: Beispiele -

Liste der natiirlichen Zahlen
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List Comprehensions: Beispiele

Liste der natiirlichen Zahlen

*> take 10 [(x,y) | x <- [1..]1, y <- [1..]]
[(1,1),1,2),(1,3),(1,4),(1,8),(1,6),(1,7),(1,8),(1,9),(1,10)]

M. Schmidt-SchauB



List Comprehensions: Beispiele e

........

Liste der natiirlichen Zahlen

*> take 10 [(x,y) | x <- [1..]1, y <- [1..]]
[(1,1),1,2),(1,3),(1,4),(1,8),(1,6),(1,7),(1,8),(1,9),(1,10)]

Liste aller ungeraden Zahlen
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List Comprehensions: Beispiele S

Liste der natiirlichen Zahlen

*> take 10 [(x,y) | x <- [1..]1, y <- [1..]]
[1,1,1,2),(1,3),0,4),0,5),(1,6),1,7),(1,8),(1,9),(1,10)]

Liste aller ungeraden Zahlen
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List Comprehensions: Beispiele (2)
Liste aller Paare (Zahl, Quadrat der Zahl)

t1,1,1,2,2,2,3,3,3]

la | (a,_,_,0) <= [&x,x,y,y) | x <= [1..3], y <= [1..3]]] ’
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List Comprehensions: Beispiele (2)
Liste aller Paare (Zahl, Quadrat der Zahl)

[a | (a,_,_,) <= [(x,x,y,y) | x <= [1..3], y <= [1..3]1]]
(1,1,1,2,2,2,3,3,3]

Map, Filter und Concat
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List Comprehensions: Beispiele (2)
Liste aller Paare (Zahl, Quadrat der Zahl)

[a | (a,_,_,) <= [(x,x,y,y) | x <= [1..3], y <= [1..3]1]]
(1,1,1,2,2,2,3,3,3]

Map, Filter und Concat
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List Comprehensions: Beispiele (2)
Liste aller Paare (Zahl, Quadrat der Zahl)

[a | (a,_,_,) <= [(x,x,y,y) | x <= [1..3], y <= [1..3]1]]
(1,1,1,2,2,2,3,3,3]

Map, Filter und Concat
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List Comprehensions: Beispiele (3)

ic|e

Quicksort:

gsort (x:xs) = gsort [y | y <- xs, y <= x]
++ [x]
++ gsort [y | y <- xs, y > x]

Beispiel:  Kakuro-Ratsel:
Losung mittels List Comprehensions
Idee Durchmusterung aller Moglichkeiten.
Generatoren und Tests.
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List-Comprehensions Beispiel-Anwendung o

ad-hoc programmiert: probiert alle Moglichkeiten aus.

Element x-i-j: Zahl in Spalte i, Zeile j

Tests: Ziffern verschieden in einem Zahlblock
Summen stimmen mit Vorgabe iiberein.

import Data.List
sol = [((x16,x17), (x21,x22,x26,x27), (x36,x37,x38) , (x41,x42,x47,x48), (x51,x52,x53) , (x62,x63,x67,x68) ,
(x72,x73)) |
x16 <-[1..8], x17 <- [ 9-x16], x21 <- [2,3,4,5,8,9],
x22<- [2,3,4,5,8,9]1\\[x21],
x26<-[2,3,4,5,8,91\\ [x21,x22,x16], x27 <- [2,3,4,5,8,9]\\[x21,%22,x26,x17] ,x21+x22+x26+x27 == 19,
x36<-[1,2,3,5,6,7,8,9]\\ [x16,x26], x37<-[1,3,5,6,7,8,9] \\ [x17,x%27,x361,
x38<-[1,2,3,5,6,8,9] \\ [x36,x37], x36+x37+x38 == 11,
x47<-[1,3,4,5] \\ [x17,x27,x37], x48 <- [6-x47] \\ [x38],
x67<-[30-x17-x27-x37-x47-2] \\ [2,4,7,x17,x27,x37,x47], x67 <=9,
x68 <- [1..9] \\ [2,4,7,x38,x48], x68 == 8 - x38-x48,x62<-[1,3,5,6,8,9]1\\[x67,x68],
x63<-[20-x62-x67-x68] ,
x41 <- [2..6]\\[x21], x42 <- [7-x41], x42 /= x22, x51 <- [14-x21-x41] \\ [4,1,x21,x41],
x52 <- [1..9] \\ [x22,7,x42,x51,4],
x53 <- [15-x51-x52] \\ [x51,x52,4], x53 > 0,
x62 <- [1..9] \\ [x22,7,x42,x52,2,4,x67,x68],
x63 <- [20-x62-x67-x68] \\ [x53,x62,7,4,2,x67,68], x63 > 0,
30 == x17+x27+x37+x47+2+x67,
x72 <- [23 - x22-x42-x52-x62] \\ [x22,x42,x52,x63], x72 >0, x72 < 7,
x73 <- [7-x72] \\ [x53,x63],
x53+x63+x73 == 8,
X17+x27+x37+x47+2+x67 == 30
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Ubersetzung von List-Comprehensionen in ZF-freies Haskel

[ e | True ] =
Lel q] =
Lel b, Q]

[lel p<-1,Q]1

[ e | let decls, Q ]

Lel
[ el g, True ]
if bthen [ e | Q ] else []

letokp=[e |l Q]
ok _ =[]
in concatMap ok 1

let decls in [ e | Q ]

(wobei Schwarzes 1-1 gemeint ist, und Buntes sind Variablen)

@ ok eine neue Variable,

@ b ein Guard,

@ q ein Generator, eine lokale Bindung
oder ein Guard (nicht True)

@ Q eine Folge von Generatoren, Deklarationen und Guards.

M. Schmidt-SchauB



Ubersetzung in ZF-freies Haskell: Beispiel -

[xy | x <= x5, y <-ys, x > 2, y < 3]
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Ubersetzung in ZF-freies Haskell: Beispiel -

[xy | x <= x5, y <-ys, x > 2, y < 3]

= let ok x = [xxy | y <-ys, x> 2, y < 3]
ok _ =[]
in concatMap ok xs
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Ubersetzung in ZF-freies Haskell: Beispiel

[xy | x <= x5, y <-ys, x > 2, y < 3]

= let ok x = [xxy | y <-ys, x> 2, y < 3]
ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = [x*y | x > 2, y < 3]
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]

in concatMap ok xs
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Ubersetzung in ZF-freies Haskell: Beispiel -

= let ok x = let ok’ y = if x > 2 then [xxy | y < 3] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs
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Ubersetzung in ZF-freies Haskell: Beispiel

let ok x = let ok’ y = if x > 2 then [x*y | y < 3] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3, True] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs
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Ubersetzung in ZF-freies Haskell: Beispiel

let ok x = let ok’ y = if x > 2 then [x*y | y < 3] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3, True] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs

if x > 2 then
(if y < 3 then [x*y | Truel else [1)

= let ok x = let ok’ y

else []
ok’ _ =[]
in concatMap ok’ ys

ok _ =[]

in concatMap ok xs
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ic

Ubersetzung in ZF-freies Haskell: Beispiel

[x*y | x <- xs, y <~ ys, x > 2, y < 3]

if x > 2 then
(if y < 3 then [x*xy] else [1)

= let ok x = let ok’ y

else []
ok’ _ =[]
in concatMap ok’ ys

ok _ =[]

in concatMap ok xs

Die Ubersetzung funktioniert, aber ist nicht optimal,
da Listen generiert und wieder abgebaut werden;

und bei x <- xs unndtige Pattern-Fallunterscheidung
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Baume
GOETH
T

UN

Rekursive Datenstrukturen:
Baume in Haskell

Binare Baume — N-are Baume — Funktionen auf Baumen —
Syntaxbdume
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Rekursive Datenstrukturen: Baume
Binare Baume mit (polymorphen) Blattmarkierungen:

data BBaum a = Blatt a | Knoten (BBaum a) (BBaum a)
deriving(Eq, Show)

e

BBaum ist Typkonstruktor, Blatt und Knoten sind Datenkonstruktoren

Typ: BBaum Int
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Baume

Rekursive Datenstrukturen: Baume e

Binare Baume mit (polymorphen) Blattmarkierungen:

data BBaum a = Blatt a | Knoten (BBaum a) (BBaum a) |
deriving(Eq, Show) |

BBaum ist Typkonstruktor, Blatt und Knoten sind Datenkonstruktoren

Typ: BBaum Int

beispielBaum =
Knoten
(Knoten
(Knoten
(Knoten (Blatt 1) (Blatt 2))
o T (Knoten (Blatt 3) (Blatt 4))
)
\\7> 7‘//'\\\\‘ (Knoten (Blatt 5) (Blatt 6))

‘////
SN N /N
/\ /N N (Kmoten
2 3 4 8§ 9 10 11 (Blatt 7)
(Knoten
(Knoten (Blatt 8) (Blatt 9))

(Knoten (Blatt 10) (Blatt 11))
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Funktionen auf Baumen (1)

Summe aller Blattmarkierungen

bSum (Blatt a) = a
bSum (Knoten links rechts) = (bSum links) + (bSum rechts)

Ein Beispielaufruf:

*> bSum beispielBaum ’
66
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Baume

Funktionen auf Baumen (1) R

Summe aller Blattmarkierungen

|
} bSum (Blatt a) = a
! bSum (Knoten links rechts) = (bSum links) + (bSum rechts)

Ein Beispielaufruf:

*> bSum beispielBaum
66

Liste der Blitter

i bRand (Blatt a) = [al |
|
|

! bRand (Knoten links rechts) = (bRand links) ++ (bRand rechts)

*> bRand beispielBaum [3
[1,2,3,4,5,6,7,8,9,10,11
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Funktionen auf Baumen (2) S

Map auf Baumen

bMap f (Blatt a) = Blatt (f a) |
bMap f (Knoten links rechts) = Knoten (bMap f links) (bMap f rethts)

Beispiel:

*> bMap ("2) beispielBaum |-|

Knoten (Knoten (Knoten (Knoten (Blatt 1) (Blatt 4))

(Knoten (Blatt 9) (Blatt 16))) (Knoten (Blatt 25) (Blatt 36)))
(Knoten (Blatt 49) (Knoten (Knoten (Blatt 64) (Blatt 81))
(Knoten (Blatt 100) (Blatt 121))))

Die Anzahl der Blatter eines Baumes:
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Funktionen auf Baumen (3) S

Element-Test

bElem e (Blatt a)

|

|

| | e == = True

I | otherwise = False

|

| bElem e (Knoten links rechts) = (bElem e links) || (bElem e recpts)

Einige Beispielaufrufe:

*> 11 ‘bElem‘ beispielBaum [«
True

*> 1 ‘DElem‘ beispielBaum [<]
True

*> 20 ‘bElem‘ beispielBaumm [+]
False

*> 0 ‘DElem‘ beispielBaum m [+]
False
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GOETHE,

Funktionen auf Baumen (4) ot

........

Fold auf Baumen

|
| bFold op (Blatt a) = a

| bFold op (Knoten a b) = op (bFold op a) (bFold op b)

Damit kann man z.B. die Summe und das Produkt berechnen:

*> bFold (+) beispielBaum [+]
66

*> bFold () beispielBaum [+]
39916800
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Funktionen auf Baumen (4b) sorrue G

FRANKFURT AM MAIN.

Allgemeineres Fold auf Bdumen:

|
foldbt :: (a ->b ->b) -> b -> BBauma ->Db |
foldbt op a (Blatt x) =op x a !
foldbt op a (Knoten x y) = (foldbt op (foldbt op a y) x) |
|
|

Der Typ des Ergebnisses kann anders sein als der Typ der
Blattmarkierung
Zum Beispiel: Rand eines Baumes:

*> foldbt (:) [] beispielBaum [«]
(1,2,3,4,5,6,7,8,9,10,11]
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Biume

Haskell Baume Data.Tree _gA

Hackage-Bibliothek zu gelabelten n-dren Baumen

data Tree a =
Node {rootLabel :: a
subForest :: Forest a }
type Forest a = [Tree a]

Data.Tree> let t1 = Node {rootLabel= 1, subForest = []} [ﬂ

Data.Tree> let t2= Node{rootLabel= 2,subForest = [t1]} [<]

Data.Tree> t2 [<—’

Node {rootLabel = 2, subForest = [Node {rootLabel = 1,
subForest = []1}]1}
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N-are Baume

|
| data NBaum a = NBlatt a | NKnoten [NBaum a]
| deriving(Eq, Show)

beispiel = NKnoten [NBlatt 1,
NKnoten [NBlatt 2, NBlatt 3, NBlatt 4],
NKnoten [NKnoten [NBlatt 5], NBlatt 6]]
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ic|e

Baume mit Knotenmarkierungen

Beachte: BBaum und NBaum haben nur Markierungen der Blatter!

Baume mit Markierung aller Knoten

I
data BinBaum a = BinBlatt a | BinKnoten a (BinBaum a)(BinBaum a)

deriving(Eq, Show) !
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Baume mit Knotenmarkierungen

Beachte: BBaum und NBaum haben nur Markierungen der Blatter!

Baume mit Markierung aller Knoten

|
data BinBaum a = BinBlatt a | BinKnoten a (BinBaum a)(BinBaum a)

deriving(Eq, Show) !
L e e e e e e e e e mmm—— ]
beispielBinBaum =
BinKnoten ’A’
A (BinKnoten ’B’

/ \ (BinKnoten ’D’ (BinBlatt ’H’) (BinBlatt ’I’))
/B\ C (BinKnoten ’E’ (BinBlatt ’J’) (BinBlatt ’K’))
Az//////// \\\x )

D E F G (BinKnoten ’C’
/ \ / \ / \ (BinKnoten ’F’
H I J K L M (BinKnoten ’L’ (BinBlatt °N’) (BinBlatt ’0°))
/\ /' \ (BinKnoten ’M’ (BinBlatt °P’) (BimBlatt ’Q’))
N O P Q )

(BinBlatt ’G’)
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Funktionen auf BinBaum (1)

Knoten in Preorder-Reihenfolge (Wurzel, links, rechts):

|
| preorder :: BinBaum t -> [t]

| preorder (BinBlatt a) = [a]

I preorder (BinKnoten a 1 r) = a:(preorder 1) ++ (preorder r)
I

preorder beispielBinBaum —-——==> "ABDHIEJKCFLNOMPQG"

/N /N PN
L M

Y\ 7\

N o P Q
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Funktionen auf BinBaum (2) ot

........

Knoten in Inorder-Reihenfolge (links, Wurzel, rechts):

inorder :: BinBaum t -> [t] 1
inorder (BinBlatt a) = [a] |
inorder (BinKnoten a 1 r) = (inorder 1) ++ a:(inorder r) |

*> inorder beispielBinBaum [«]
"HDIBJEKANLOFPMQCG"

Y\ Y\ PN
L M

N Y\

N O P Q
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GOETHE,

Funktionen auf BinBaum (3) ot

........

Knoten in Post-Order Reihenfolge (links, rechts, Wurzel)

! postorder (BinBlatt a) = [al
| postorder (BinKnoten a 1 r) = |
[ (postorder 1) ++ (postorder r) ++ [al !

*> postorder beispielBinBaum [«]
"HIDJKEBNOLPQMFGCA"

7N\ N PR

L M
AN N\
N O P Q@



Funktionen auf BinBaum (2) sorrue G

FRANKFURT AM MAIN.

Level-Order (Stufenweise, wie Breitensuche)

Schlecht:
levelorderSchlecht b =
concat [nodesAtDepthI i b | i <- [0..depth b]l]

where

nodesAtDepthI O (BinBlatt a) = [a]

nodesAtDepthI i (BinBlatt a) = []

nodesAtDepthI O (BinKnoten a 1 r) = [al

nodesAtDepthI i (BinKnoten a 1 r) = (nodesAtDepthI (i-1) 1)

depth (BinBlatt _) = 0
depth (BinKnoten _ 1 r) = 1+(max (depth 1) (depth r))

|
|
|
|
|
|
|
|
|
|
l
|
++ (nodesAtDepthI (i-1) f)
|
|
|
|
1

*> levelorderSchlecht beispielBinBaum [<]
"ABCDEFGHIJKLMNOPQ"
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Funktionen auf BinBaum (3)

GOETHE,

.......

Level-Order (Stufenweise, wie Breitensuche)

Besser:

| levelorder b = loForest [b]

where

loForest xs = map root xs ++ concatMap (loForest .

root (BinBlatt a) = a

root (BinKnoten a _ _) = a
subtrees (BinBlatt _) = []
subtrees (BinKnoten

*> levelorder beispielBinBaum [«
"ABCDEFGHIJKLMNOPQ"
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Baume mit Knoten und Kantenmarkierungen

data BinBaumMitKM a b =
BiBlatt a
| BiKnoten a (b, BinBaumMitKM a b) (b,BinBaumMitKM a b)
deriving(Eq, Show)

L e o o o o e o e e e e e e e e e e e e e = 1
A beispielBiBaum =
0 1 BiKnoten ’A’

(0,BiKnoten °’B’

(2,BiBlatt ’D’)

B c (3,BiBlatt ’E’))
f/ \3 z;l/ \i) (1,BiKnoten ’C’

(4,BiBlatt ’F’)

D E F G (5,BiBlatt ’G’))
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Funktion auf BinBaumMitKM —‘&Hu

Map mit 2 Funktionen: auf Blatt- und Knoten-Markierung

biMap f g (BiBlatt a) = BiBlatt (f a) |
biMap f g (BiKnoten a (k1l,links) (kr,rechts) = }
BiKnoten (f a) (g k1, biMap f g links) (g kr, biMap f g rechts?

1

Beispiel

*> biMap toLower even beispielBiBaum

BiKnoten ’a’

(True,BiKnoten ’b’ (True,BiBlatt ’d’) (False,BiBlatt ’e’))
(False,BiKnoten ’c’ (True,BiBlatt ’f’) (False,BiBlatt ’g’))
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Anmerkung zum $-Operator -

Definition:

geklammert
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Baume

Syntaxbaume corru: 3

Auch Syntaxbdume sind Baume

Beispiel: Einfache arithmetische Ausdriicke:

E := (E+E)|(ExE)|Z
Z = 07| ... |97
zZ' = e|Z

Als Haskell-Datentyp (infix-Konstruktoren miissen mit : beginnen)

data ArEx = ArEx :+: ArEx data ArEx = Plus ArEx ArEx
| ArEx :*: ArEx alternativ | Mult ArEx ArEx
| Zahl Int |

Zahl Int

ZB. (3+4)*(5+ (64 7)) als Objekt vom Typ ArEx:

((Zahl 3) :+: (Zahl 4)) :*: ((Zahl 5) :+: ((Zahl 6) :+: (Zahl 7)))
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Syntaxbidume (2)

Interpreter als Funktion in Haskell:
______________________________________________________ .
interpretArEx :: ArEx -> Int !
interpretArEx (Zahl i) = i I
interpretArEx (el :+: e2) = (interpretArEx el) + (interpretArEx e2)
interpretArEx (el :*: e2) = (interpretArEx el) * (interpretArEx e2)
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Syntaxbaume: Lambda-Kalkiil -

Syntax des Lambda-Kalkiils als Datentyp:

data LExp v =
Var v -- X
| Lambda v (LExp v) - \v.e
| App (LExp v) (LExp v) -- (el e2)

:: LExp String
= App (Lambda "x" (Var "x")) (Lambda "y" (Var "y"))
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Implementierung der NO-Reduktion o
Versuche eine 3-Reduktion durchzufiihren, dabei frische Variablen

mi.tf[lhrenlu.mllmbenemlen______________________________‘
tryNOBeta :: (Eq b) => LExp b -> [b] -> Maybe (LExp b, [bl)

| tryNOBeta (App (Lambda v e) e2) freshvars |
} let (e’,vars) = substitute freshvars e e2 v :
! I
! I

in Just (e’,vars)
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Implementierung der NO-Reduktion S

Versuche eine 3-Reduktion durchzufiihren, dabei frische Variablen
mitfiihren zum Umbenennen_ _ - ___________________________ ‘
tryNOBeta :: (Eq b) => LExp b -> [b] -> Maybe (LExp b, [bl)

| tryNOBeta (App (Lambda v e) e2) freshvars = |
} let (e’,vars) = substitute freshvars e e2 v :
: in Just (e’,vars)

tryNOBeta (App el e2) freshvars =
case tryNOBeta el freshvars of
Nothing -> Nothing
Just (el’,vars) -> (Just ((App el’ e2), vars))

| tryNOBeta

M. Schmidt-SchauB
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Implementierung der NO-Reduktion (2)

Implementierung der 2% Reduktion:

reduceNO e = let (e’,v’) = rename e fresh
in tryNO e’ v’
where
fresh = ["x_" ++ show i | i <- [1..]]

tryNO e vars = case tryNOBeta e vars of
Nothing -> e
Just (e’,vars’) -> tryNO e’ vars’

M. Schmidt-SchauB



Implementierung der NO-Reduktion (3) i

Hilfsfunktion: Substitution mit Umbenennung:

substitute freshvars (Var v) expr2 var
| v == var = rename (expr2) freshvars
| otherwise = (Var v,freshvars)

substitute freshvars (App el e2) expr2 var =

let (el’,vars’) = substitute freshvars el expr2 var
(e2’,vars’’) = substitute vars’ e2 expr2 var

in (App el’ e2’, vars’’)

substitute freshvars (Lambda v e) expr2 var =

let (e’,vars’) = substitute freshvars e expr2 var
in (Lambda v e’,vars’)
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Implementierung der NO-Reduktion (4) conmat

Hilfsfunktion: Umbenennung eines Ausdrucks

rename expr freshvars = rename_it expr [] freshvars
where

rename_it (Var v) renamings freshvars =
case lookup v renamings of
Nothing -> (Var v,freshvars)
Just v’ -> (Var v’,freshvars)

rename_it (App el e2) renamings freshvars =
let (el’,vars’) = rename_it el renamings freshvars
(e2’,vars’’) = rename_it e2 renamings vars’
in (App el’ e2’, vars’’)

rename_it (Lambda v e) renamings (f:freshvars) =

let (e’,vars’) = rename_it e ((v,f):renamings) freshvars
in (Lambda f e’,vars’)
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Typdefinitionen in Haskell -

Drei syntaktische Méglichkeiten in Haskell

@ data

@ type
@ newtype

Verwendung von data haben wir bereits ausgiebig gesehen
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Typdefinitionen in Haskell (2)

type; Variante von Typdefinitionen.

Mit type definiert man Typsynonyme, d.h:
Neuer Name fiir bekannten Typ

Beispiele:

type IntCharPaar = (Int,Char)

type Studenten = [Student]

type MyList a = [a]
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Typdefinitionen

Typdefinitionen in Haskell (2) ot

........

type; Variante von Typdefinitionen.
Mit type definiert man Typsynonyme, d.h:
Neuer Name fiir bekannten Typ

Beispiele:

type IntCharPaar = (Int,Char)

|
|
|
type Studenten = [Student] 1
|
|
|
|

i alleStudentenMitA :: Studenten -> Studenten
! alleStudentenMitA = map nachnameMitA
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Typdefinitionen

Typdefinitionen in Haskell (3) come @

FRANKFURT AM MAIN.

Typdefinition mit newtype:
@ newtype ist sehr dhnlich zu type

@ Mit newtype-definierte Typen diirfen eigene Klasseninstanz
fiir Typklassen haben

Mit type-definierte Typen aber nicht.

Mit newtype-definierte Typen haben einen neuen Konstruktor

case und pattern match fiir Objekte vom newtype-definierten
Typ sind immer erfolgreich.
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Typdefinitionen

Typdefinitionen in Haskell (4) come @

FRANKFURT AM MAIN.

Beispiel fiir newtype:

o o —  — — — — — — — — o

Ist aber nicht semantisch dquivalent dazu, da
Terminierungsverhalten anders

Vorteil newtype vs. data: Der Compiler weiB, dass es nur ein
Typsynonym ist und kann optimieren:

case-Ausdriicke dazu werden eliminiert und durch direkte Zugriffe
ersetzt.
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