

1

Einführung in die
Funktionale Programmierung:

Haskell

Prof. Dr. Manfred Schmidt-Schauß

WS 2023/24

Stand der Folien: 5. Dezember 2023

Zahlen Datentypen Listen Bäume Typdefinitionen

Übersicht

1 Zahlen

2 Algebraische Datentypen
Aufzählungstypen
Produkttypen
Parametrisierte Datentypen
Rekursive Datentypen

3 Listen
Listenfunktionen
Ströme
Weitere
List Comprehensions

4 Bäume
Datentypen für Bäume
Syntaxbäume

5 Typdefinitionen

M. Schmidt-Schauß (05) Haskell 2 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Ziele des Kapitels

Übersicht über die Konstrukte von Haskell

Übersetzung der Konstrukte in KFPTSP+seq

Programmierung in Haskell mit Datenstrukturen

Wir erörtern nicht:

Die Übersetzung von let und where, (umfangreich und wg.
rekursiven Bindungen)
Übersetzung in KFPTSP+seq ist möglich durch
Fixpunktkombinatoren

M. Schmidt-Schauß (05) Haskell 3 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Zahlen in Haskell und KFPTSP+seq

Eingebaute Zahlen in Haskell ; Peano-Kodierung für KFPTSP+seq

M. Schmidt-Schauß (05) Haskell 4 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Haskell: Zahlen

Eingebaut:

Ganze Zahlen beschränkter Größe: Int

Ganze Zahlen beliebiger Größe: Integer

Gleitkommazahlen: Float

Gleitkommazahlen mit doppelter Genauigkeit: Double

Rationale Zahlen: Rational
(verallgemeinert Ratio α, wobei
Rational = Ratio Integer)

M. Schmidt-Schauß (05) Haskell 5 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Arithmetische Operationen

Rechenoperationen:

+ für die Addition

- für die Subtraktion

* für die Multiplikation

/ für die Division

mod , div

Die Operatoren sind überladen. Dafür gibt es Typklassen.

Typ von (+) :: Num a => a -> a -> a

Genaue Behandlung von Typklassen: später

M. Schmidt-Schauß (05) Haskell 6 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Präfix / Infix

Anmerkung zum Minuszeichen:

Mehr Klammern als man denkt: 5 + -6 geht nicht,
richtig: 5 + (-6)

Das Zeichen − wird speziell (vom Parser) gehandhabt.

In Haskell können Präfix-Operatoren (Funktionen) auch infix
benutzt werden

mod 5 6 ; infix durch Hochkommata: 5 ‘mod‘ 6

Umgekehrt können infix-Operatoren auch präfix benutzt
werden

5 + 6 ; Präfix durch Einklammern: (+) 5 6

M. Schmidt-Schauß (05) Haskell 7 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Vergleichsoperatoren

== für den Gleichheitstest
(==) :: (Eq a) => a -> a -> Bool

/= für den Ungleichheitstest

<, <=, >, >=, für kleiner, kleiner gleich, größer
und größer gleich
(der Typ ist (Ord a) => a -> a -> Bool).

M. Schmidt-Schauß (05) Haskell 8 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Assoziativitäten und Prioritäten

infixr 9 .

infixr 8 ^, ^^, **

infixl 7 *, /, ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘

infixl 6 +, -

-- The (:) operator is built-in syntax, and cannot

-- legally be given a fixity declaration; but its

-- fixity is given by:

-- infixr 5 :

infix 4 ==, /=, <, <=, >=, >

infixr 3 &&

infixr 2 ||

infixl 1 >>, >>=

infixr 1 =<<

infixr 0 $, $!, ‘seq‘

M. Schmidt-Schauß (05) Haskell 9 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Darstellung von Zahlen in KFPTSP+seq

Mögliche Kodierung von Zahlen in KFPTSP+seq: Peano-Zahlen:

Peano-Zahlen sind aus Zero und (Succ Peano-Zahl)
aufgebaut

nach dem italienischen Mathematiker Guiseppe Peano
(1858-1932) benannt

data Pint = Zero | Succ Pint

deriving(Eq,Show)

Übersetzung:

P(0) := Zero

P(n) := Succ(P(n− 1)) für n > 0

Z.B. wird 3 dargestellt als Succ(Succ(Succ(Zero))).

M. Schmidt-Schauß (05) Haskell 10 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Funktionen auf Peano-Zahlen

istZahl :: Pint -> Bool

istZahl x = case x of

Zero -> True

(Succ y) -> istZahl y

Keine echte Zahl:

unendlich :: Pint

unendlich = Succ unendlich

Addition:

peanoPlus :: Pint -> Pint -> Pint

peanoPlus x y = if istZahl x && istZahl y then plus x y else bot

where

plus x y = case x of

Zero -> y

Succ z -> Succ (plus z y)

bot = bot

M. Schmidt-Schauß (05) Haskell 11 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Funktionen auf Peano-Zahlen (2)

Multiplikation:

peanoMult :: Pint -> Pint -> Pint

peanoMult x y = if istZahl x && istZahl y then mult x y else bot

where

mult x y = case x of

Zero -> Zero

Succ z -> peanoPlus y (mult z y)

M. Schmidt-Schauß (05) Haskell 12 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Funktionen auf Peano-Zahlen (2)

Vergleiche:

peanoEq :: Pint -> Pint -> Bool

peanoEq x y = if istZahl x && istZahl y then eq x y else bot

where

eq Zero Zero = True

eq (Succ x) (Succ y) = eq x y

eq _ _ = False

peanoLeq :: Pint -> Pint -> Bool

peanoLeq x y = if istZahl x && istZahl y then leq x y else bot

where

leq Zero y = True

leq x Zero = False

leq (Succ x) (Succ y) = leq x y

M. Schmidt-Schauß (05) Haskell 13 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Algebraische Datentypen in Haskell

Aufzählungstypen – Produkttypen – Parametrisierte Datentypen –
Rekursive Datentypen

M. Schmidt-Schauß (05) Haskell 14 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Aufzählungstypen

Aufzählungstyp = Aufzählung verschiedener Werte

data Typname = Konstante1 | Konstante2 | ... | KonstanteN

Beispiele:

data Bool = True | False

data Wochentag = Montag | Dienstag | Mittwoch | Donnerstag

| Freitag | Samstag | Sonntag

deriving(Show)

deriving(Show) erzeugt Instanz der Typklasse Show, damit der
Datentyp angezeigt werden kann.

M. Schmidt-Schauß (05) Haskell 15 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Aufzählungstypen (2)

istMontag :: Wochentag -> Bool

istMontag x = case x of

Montag -> True

Dienstag -> False

Mittwoch -> False

Donnerstag -> False

Freitag -> False

Samstag -> False

Sonntag -> False

In Haskell erlaubt (in KFPTSP+seq nicht):

istMontag’ :: Wochentag -> Bool

istMontag’ x = case x of

Montag -> True

y -> False

Übersetzung: Aus istMontag’ wird istMontag

M. Schmidt-Schauß (05) Haskell 16 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Aufzählungstypen (3)

In Haskell:

Pattern-matching in den linken Seiten der SK-Definition:

istMontag’’ :: Wochentag -> Bool

istMontag’’ Montag = True

istMontag’’ _ = False

Übersetzung: Erzeuge case-Ausdruck

istMontag’’ xs = case xs of

Montag -> True

... -> False

M. Schmidt-Schauß (05) Haskell 17 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Produkttypen

Produkttyp = Zusammenfassung verschiedener Werte in ein
Objekt

Bekanntes Beispiel: Tupel

data Typname = KonstruktorName Typ1 Typ2 ... TypN

Beispiel:

data Student = Student

String -- Name

String -- Vorname

Int -- Matrikelnummer

M. Schmidt-Schauß (05) Haskell 18 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Produkttypen (2)

setzeName :: Student -> String -> Student

setzeName x name’ =

case x of

(Student name vorname mnr)

-> Student name’ vorname mnr

Alternativ mit Pattern auf der linken Seite der Funktionsdefinition:

setzeName :: Student -> String -> Student

setzeName (Student name vorname mnr) name’ =

Student name’ vorname mnr

M. Schmidt-Schauß (05) Haskell 19 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Produkttypen und Aufzählungstypen

Man kann beides mischen:

data DreiDObjekt =

Wuerfel Int

| Quader Int Int Int

| Kugel Int

Wird auch als Summentyp bezeichnet, allgemein

data Summentyp = Konsdef1 | Konsdef2 | ... | Konsdefn

wobei Konsdef1 ... Konsdefn Konstruktor-Definition mit
Argument-Typen sind (z.B. Produkttypen)

M. Schmidt-Schauß (05) Haskell 20 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Record-Syntax: Einführung

data Student = Student

String -- Vorname

String -- Name

Int -- Matrikelnummer

Nachteil:
Nur die Kommentare verraten, was die Komponenten darstellen.

Außerdem mühsam: Zugriffsfunktionen erstellen:

vorname :: Student -> String

vorname (Student vorname name mnr) = vorname

M. Schmidt-Schauß (05) Haskell 21 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Record-Syntax: Einführung (2)

Änderung am Datentyp:

data Student = Student

String -- Vorname

String -- Name

Int -- Matrikelnummer

Int -- Hochschulsemester

muss für Zugriffsfunktionen nachgezogen werden

vorname :: Student -> String

vorname (Student vorname name mnr hsem) = vorname

Abhilfe in diesem Aspekt ist die Record-Syntax

M. Schmidt-Schauß (05) Haskell 22 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Record-Syntax in Haskell

Student mit Record-Syntax:

data Student = Student {

vorname :: String,

name :: String,

matrikelnummer :: Int

}

Zur Erinnerung: Ohne Record-Syntax:

data Student = Student String String Int

⇒ Die Komponenten werden mit Namen markiert

M. Schmidt-Schauß (05) Haskell 23 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Beispiel

Beispiel: Student "Hans" "Mueller" 1234567

kann man schreiben als

Student{vorname="Hans", name="Mueller", matrikelnummer=1234567}

Reihenfolge der Komponenten egal:

Prelude> let x = Student{matrikelnummer=1234567,

vorname="Hans", name="Mueller"} ←↩

M. Schmidt-Schauß (05) Haskell 24 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Record-Syntax

Zugriffsfunktionen sind automatisch verfügbar, z.B.

Prelude> matrikelnummer x ←↩
1234567

Record-Syntax ist in den Pattern erlaubt

Nicht alle Felder müssen abgedeckt werden bei Erweiterung
der Datenstrukturen, daher kein Problem

nachnameMitA Student{nachname = ’A’:xs} = True

nachnameMitA _ = False

Übersetzung in KFPTSP+seq:
Normale Datentypen verwenden
und Zugriffsfunktionen erzeugen

M. Schmidt-Schauß (05) Haskell 25 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Record-Syntax

Zugriffsfunktionen sind automatisch verfügbar, z.B.

Prelude> matrikelnummer x ←↩
1234567

Record-Syntax ist in den Pattern erlaubt

Nicht alle Felder müssen abgedeckt werden bei Erweiterung
der Datenstrukturen, daher kein Problem

nachnameMitA Student{nachname = ’A’:xs} = True

nachnameMitA _ = False

Übersetzung in KFPTSP+seq:
Normale Datentypen verwenden
und Zugriffsfunktionen erzeugen

M. Schmidt-Schauß (05) Haskell 25 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Record-Syntax: Update

setzeName :: Student -> String -> Student

setzeName student neuername =

student {name = neuername}

ist äquivalent zu

setzeName :: Student -> String -> Student

setzeName student neuername =

Student {vorname = vorname student,

name = neuername,

matrikelnummer = matrikelnummer student}

M. Schmidt-Schauß (05) Haskell 26 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Parametrisierte Datentypen

Datentypen in Haskell dürfen polymorph parametrisiert sein:

data Maybe a = Nothing | Just a

Maybe ist polymorph über a (der Parameter ist a)

Beispiel für Maybe-Verwendung:

safeHead :: [a] -> Maybe a

safeHead xs = case xs of

[] -> Nothing

(y:ys) -> Just y

M. Schmidt-Schauß (05) Haskell 27 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Parametrisierte Datentypen

Datentypen in Haskell dürfen polymorph parametrisiert sein:

data Maybe a = Nothing | Just a

Maybe ist polymorph über a (der Parameter ist a)

Beispiel für Maybe-Verwendung:

safeHead :: [a] -> Maybe a

safeHead xs = case xs of

[] -> Nothing

(y:ys) -> Just y

M. Schmidt-Schauß (05) Haskell 27 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Rekursive Datentypen

Rekursive Datentypen:
Der definierte Typ kommt rechts vom = wieder vor

data Typ = ... Konstruktor Typ ...

Pint war bereits rekursiv:

data Pint = Zero | Succ Pint

Listen könnte man definieren als:

data List a = Nil | Cons a (List a)

In Haskell so, (Spezialsyntax):

data [a] = [] | a:[a]

M. Schmidt-Schauß (05) Haskell 28 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Aufzählungst. Produkt. Param. Datent. Rek. Datent.

Haskell: Geschachtelte Pattern

viertesElement (x1:(x2:(x3:(x4:xs)))) = Just x4

viertesElement _ = Nothing

Übersetzung in KFPTSP+seq muss geschachtelte case-Ausdrücke
einführen:

viertesElement ys = case ys of

[] -> Nothing

(x1:ys’) ->

case ys’ of

[] -> Nothing

(x2:ys’’) ->

case ys’’ of

[] -> Nothing

(x3:ys’’’) ->

case ys’’’ of

[] -> Nothing

(x4:xs) -> Just x4

M. Schmidt-Schauß (05) Haskell 29 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Rekursive Datenstrukturen: Listen

Listenfunktionen – Listen als Ströme – List Comprehensions

M. Schmidt-Schauß (05) Haskell 30 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen von Zahlen

Haskell: spezielle Syntax

[startwert..endwert]

erzeugt: Liste der Zahlen von startwert bis endwert

z.B. ergibt [10..15]die Liste [10,11,12,13,14,15].

[startwert..]

erzeugt: unendliche Liste ab dem startwert

z.B. erzeugt [1..]die Liste aller natürlichen Zahlen.

M. Schmidt-Schauß (05) Haskell 31 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen von Zahlen

Haskell: spezielle Syntax

[startwert..endwert]

erzeugt: Liste der Zahlen von startwert bis endwert

z.B. ergibt [10..15]die Liste [10,11,12,13,14,15].

[startwert..]

erzeugt: unendliche Liste ab dem startwert

z.B. erzeugt [1..]die Liste aller natürlichen Zahlen.

M. Schmidt-Schauß (05) Haskell 31 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen von Zahlen (2)

[startwert,naechsterWert..endwert]

erzeugt:
[startwert,startWert+delta,startWert+2delta,...,endwert]

wobei delta=naechsterWert - startWert

Z.B. ergibt: [10,12..20]die Liste [10,12,14,16,18,20].

[startWert,naechsterWert..]

erzeugt: die unendlich lange Liste mit der Schrittweite
naechsterWert - startWert.

z.B. [2,4..]ergibt Liste aller geraden natürlichen Zahlen

M. Schmidt-Schauß (05) Haskell 32 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen von Zahlen (2)

[startwert,naechsterWert..endwert]

erzeugt:
[startwert,startWert+delta,startWert+2delta,...,endwert]

wobei delta=naechsterWert - startWert

Z.B. ergibt: [10,12..20]die Liste [10,12,14,16,18,20].

[startWert,naechsterWert..]

erzeugt: die unendlich lange Liste mit der Schrittweite
naechsterWert - startWert.

z.B. [2,4..]ergibt Liste aller geraden natürlichen Zahlen

M. Schmidt-Schauß (05) Haskell 32 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen von Zahlen (3)

Syntaktischer Zucker: es sind normale Funktionen für
den Datentyp List Integer:

from :: Integer -> [Integer]

from start = start:(from (start+1))

fromTo :: Integer -> Integer -> [Integer]

fromTo start end

| start > end = []

| otherwise = start:(fromTo (start+1) end)

fromThen :: Integer -> Integer -> [Integer]

fromThen start next = start:(fromThen next (2*next - start))

fromThenTo :: Integer -> Integer -> Integer -> [Integer]

fromThenTo start next end

| start > end = []

| otherwise = start:(fromThenTo next (2*next - start) end)

M. Schmidt-Schauß (05) Haskell 33 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Guards

f pat1 ... patn

| guard1 = e1

| ...

| guardn = en

Dabei: guard1 bis guardn sind Boolesche Ausdrücke, die die
Variablen der Pattern pat1,. . . ,patn benutzen dürfen.

Auswertung von oben nach unten

erster Guard der zu True auswertet bestimmt Wert.

otherwise = True ist vordefiniert

M. Schmidt-Schauß (05) Haskell 34 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung von Guards in KFPTSP+seq

f pat1 ... patn

| guard1 = e1

| ...

| guardn = en

ergibt (if-then-else muss noch übersetzt werden):

f pat1 ... patn =

if guard1 then e1 else

if guard2 then e2 else

...

if guardn then en else s

Wobei s = bot, wenn keine weitere Funktionsdefinition für f
kommt, anderenfalls ist s die Übersetzung anderer
Definitionsgleichungen.

M. Schmidt-Schauß (05) Haskell 35 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Beispiel

f (x:xs)

| x < 10 = True

| x > 100 = True

f ys = False

Die korrekte Übersetzung in KFPTSP+seq (mit if-then else),
unter der Annahme dass es Peano-Zahlen sind, ist:

f = case x of {

Nil -> False;

(x:xs) -> if x < 10 then True else

if x > 100 then True else False

}

M. Schmidt-Schauß (05) Haskell 36 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Zeichen und Zeichenketten

Eingebauter Typ Char für Zeichen

Darstellung: Einfaches Anführungszeichen, z.B. ’A’

Steuersymbole beginnen mit \, z.B. \n, \t

Spezialsymbole \\ und \"

Strings

Vom Typ String = [Char]

Sind Listen von Zeichen

Spezialsyntax "Hallo" ist gleich zu

[’H’,’a’,’l’,’l’,’o’] bzw.

’H’:(’a’:(’l’:(’l’:(’o’:[])))).

M. Schmidt-Schauß (05) Haskell 37 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Zeichen und Zeichenketten

Eingebauter Typ Char für Zeichen

Darstellung: Einfaches Anführungszeichen, z.B. ’A’

Steuersymbole beginnen mit \, z.B. \n, \t

Spezialsymbole \\ und \"

Strings

Vom Typ String = [Char]

Sind Listen von Zeichen

Spezialsyntax "Hallo" ist gleich zu

[’H’,’a’,’l’,’l’,’o’] bzw.

’H’:(’a’:(’l’:(’l’:(’o’:[])))).

M. Schmidt-Schauß (05) Haskell 37 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Zeichen und Zeichenketten (2)

Nützliche Funktionen für Char: In der Bibliothek Data.Char

Z.B.:

ord :: Char -> Int

chr :: Int -> Char

isLower :: Char -> Bool

isUpper :: Char -> Bool

isAlpha :: Char -> Bool

toUpper :: Char -> Char

toLower :: Char -> Char

M. Schmidt-Schauß (05) Haskell 38 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen

Einige vordefinierte Listenfunktionen, fast alle in Data.List

M. Schmidt-Schauß (05) Haskell 39 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (1)

++, Listen zusammenhängen, (auch append genannt)

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x:(xs ++ ys)

Beispiele:

*> [[1..10] ++ [100..109] ←↩
[1,2,3,4,5,6,7,8,9,10,100,101,102,103,104,105,106,107,108,109]

*> [[1,2],[2,3]] ++ [[3,4,5]] ←↩
[[1,2],[2,3],[3,4,5]]

*> "Infor" ++ "matik" ←↩
"Informatik"

Laufzeitverhalten: linear in der Länge der ersten Liste

M. Schmidt-Schauß (05) Haskell 40 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (2)

Zugriff auf Listenelement per Index: !!

(!!) :: [a] -> Int -> a

[] !! _ = error "Index too large"

(x:xs) !! 0 = x

(x:xs) !! i = xs !! (i-1)

Beispiele:

*> [1,2,3,4,5]!!3 ←↩
4

*> [0,1,2,3,4,5]!!3 ←↩
3

*> [0,1,2,3,4,5]!!5 ←↩
5

*> [1,2,3,4,5]!!5 ←↩
*** Exception: Prelude.(!!): index too large

M. Schmidt-Schauß (05) Haskell 41 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (3)
Index eines Elements berechnen: elemIndex

elemIndex :: (Eq a) => a -> [a] -> Maybe Int

elemIndex a xs = findInd 0 a xs

where

findInd i a [] = Nothing

findInd i a (x:xs)

| a == x = Just i

| otherwise = findInd (i+1) a xs

Beispiele:

*> elemIndex 1 [1,2,3] ←↩
Just 0

*> elemIndex 1 [0,1,2,3] ←↩
Just 1

*> elemIndex 1 [5,4,3,2] ←↩
Nothing

*> elemIndex 1 [1,4,1,2] ←↩
Just 0

M. Schmidt-Schauß (05) Haskell 42 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (4)

Map: Funktion auf Listenelemente anwenden

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x):(map f xs)

Beispiele:

*> map (*3) [1..20] ←↩
[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60]

*> map not [True,False,False,True] ←↩
[False,True,True,False]

*> map (^2) [1..10] ←↩
[1,4,9,16,25,36,49,64,81,100]

*> map toUpper "Informatik" ←↩
"INFORMATIK"

M. Schmidt-Schauß (05) Haskell 43 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (5)

Filter: Elemente heraus filtern (aus Listen)

filter :: (a -> Bool) -> [a] -> [a]

filter f [] = []

filter f (x:xs)

| f x = x:(filter f xs)

| otherwise = filter f xs

Beispiele:

*> filter (> 15) [10..20] ←↩
[16,17,18,19,20]

*> filter isAlpha "2017 Informatik 2017" ←↩
"Informatik"

*> filter (\x -> x > 5) [1..10] ←↩
[6,7,8,9,10]

M. Schmidt-Schauß (05) Haskell 44 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (6)

Siehe auch Data.List
Analog zu filter: delete: Ein Listenelement überall entfernen

delete x [] = []

delete x (y:ys) = if x == y then ys else delete x ys

Mengendifferenz bilden:

*>[1,2,3,4,5,6,7] \\ [5,4,3] ←↩
[1,2,6,7]

Der Kompositionsoperator (.) ist definiert als:

(f . g) x = f (g x)

Weitere Funktion:

*> nub [1,2,3,4,3,2,1,2,4,3,5] ←↩
[1,2,3,4,5]

M. Schmidt-Schauß (05) Haskell 45 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (7)

Length: Länge einer Liste

length :: [a] -> Int

length [] = 0

length (_:xs) = 1+(length xs)

Beispiele:

*> length "Informatik" ←↩
10

*> length [2..20002] ←↩
20001

*> length [1..] ←↩
^CInterrupted

M. Schmidt-Schauß (05) Haskell 46 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (8)

Length: Bessere Variante (konstanter Platz)

length :: [a] -> Int

length xs = length_it xs 0

length_it [] acc = acc

length_it (_:xs) acc = let acc’ = 1+acc

in seq acc’ (length_it xs acc’)

M. Schmidt-Schauß (05) Haskell 47 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (9)

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

reverse1 :: [a] -> [a]

reverse1 [] = []

reverse1 (x:xs) = (reverse1 xs) ++ [x]

Besser mit Stack: Laufzeit linear

reverse :: [a] -> [a]

reverse xs = rev xs []

where rev [] acc = acc

rev (x:xs) acc = rev xs (x:acc)

*> reverse [1..10] ←↩
[10,9,8,7,6,5,4,3,2,1]

*> reverse "RELIEFPFEILER" ←↩
"RELIEFPFEILER"

*> reverse [1..] ←↩
^C Interrupted

M. Schmidt-Schauß (05) Haskell 48 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (9)

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

reverse1 :: [a] -> [a]

reverse1 [] = []

reverse1 (x:xs) = (reverse1 xs) ++ [x]

Besser mit Stack: Laufzeit linear

reverse :: [a] -> [a]

reverse xs = rev xs []

where rev [] acc = acc

rev (x:xs) acc = rev xs (x:acc)

*> reverse [1..10] ←↩
[10,9,8,7,6,5,4,3,2,1]

*> reverse "RELIEFPFEILER" ←↩
"RELIEFPFEILER"

*> reverse [1..] ←↩
^C Interrupted

M. Schmidt-Schauß (05) Haskell 48 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (9)

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

reverse1 :: [a] -> [a]

reverse1 [] = []

reverse1 (x:xs) = (reverse1 xs) ++ [x]

Besser mit Stack: Laufzeit linear

reverse :: [a] -> [a]

reverse xs = rev xs []

where rev [] acc = acc

rev (x:xs) acc = rev xs (x:acc)

*> reverse [1..10] ←↩
[10,9,8,7,6,5,4,3,2,1]

*> reverse "RELIEFPFEILER" ←↩
"RELIEFPFEILER"

*> reverse [1..] ←↩
^C Interrupted

M. Schmidt-Schauß (05) Haskell 48 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (10)

Repeat und Replicate

repeat :: a -> [a]

repeat x = x:(repeat x)

replicate :: Int -> a -> [a]

replicate 0 x = []

replicate i x = x:(replicate (i-1) x)

Beispiele

*> repeat 1 ←↩
[1,^C1Interrupted

*> replicate 10 [1,2] ←↩
[[1,2],[1,2],[1,2],[1,2],[1,2],[1,2],[1,2],[1,2],[1,2],[1,2]]

*> replicate 20 ’A’ ←↩
"AAAAAAAAAAAAAAAAAAAA"

M. Schmidt-Schauß (05) Haskell 49 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (11)

Take und Drop: n Elemente nehmen / verwerfen

take :: Int -> [a] -> [a]

take i [] = []

take 0 xs = []

take i (x:xs) = x:(take (i-1) xs)

drop i [] = []

drop 0 xs = xs

drop i (x:xs) = drop (i-1) xs

Beispiele:

*> take 10 [1..] ←↩
[1,2,3,4,5,6,7,8,9,10]

*> drop 5 "Informatik" ←↩
"matik"

*> take 5 (drop 3 [1..]) ←↩
[4,5,6,7,8]

M. Schmidt-Schauß (05) Haskell 50 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (12)

TakeWhile und DropWhile

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [] = []

takeWhile p (x:xs)

| p x = x:(takeWhile p xs)

| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] = []

dropWhile p (x:xs)

| p x = dropWhile p xs

| otherwise = x:xs

*> takeWhile (> 5) [5,6,7,3,6,7,8] ←↩
[]

*> takeWhile (> 5) [7,6,7,3,6,7,8] ←↩
[7,6,7]

*> dropWhile (< 10) [1..20] ←↩
[10,11,12,13,14,15,16,17,18,19,20]

M. Schmidt-Schauß (05) Haskell 51 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (13)

Zip und Unzip

zip :: [a] -> [b] -> [(a,b)]

zip [] ys = []

zip xs [] = []

zip (x:xs) (y:ys) = (x,y):(zip xs ys)

unzip :: [(a, b)] -> ([a], [b])

unzip [] = ([],[])

unzip ((x,y):xs) = let (xs’,ys’) = unzip xs

in (x:xs’,y:ys’)

Beispiele:

*> zip [1..10] "Informatik" ←↩
[(1,’I’),(2,’n’),(3,’f’),(4,’o’),(5,’r’),

(6,’m’),(7,’a’),(8,’t’),(9,’i’),(10,’k’)]

*> unzip [(1,’I’),(2,’n’),(3,’f’),(4,’o’),(5,’r’),

(6,’m’),(7,’a’),(8,’t’),(9,’i’),(10,’k’)] ←↩
([1,2,3,4,5,6,7,8,9,10],"Informatik")

M. Schmidt-Schauß (05) Haskell 52 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (14)

Bemerkung zu zip:

Man kann zwar zip3, zip4 etc. definieren um 3, 4, . . . , Listen in
3-Tupel, 4-Tupel, etc. einzupacken, aber:

Man kann keine Funktion zipN für n Listen definieren, wobei n ein
Argument ist.

Grund: diese Funktion wäre nicht getypt.

M. Schmidt-Schauß (05) Haskell 53 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (15)

Verallgemeinerung von zip und map:

zipWith :: (a -> b -> c) -> [a]-> [b] -> [c]

zipWith f (x:xs) (y:ys) = (f x y) : (zipWith f xs ys)

zipWith _ _ _ = []

Damit kann man zip definieren:

zip = zipWith (\x y -> (x,y))

Anderes Beispiel:

vectorAdd :: (Num a) => [a] -> [a] -> [a]

vectorAdd = zipWith (+)

M. Schmidt-Schauß (05) Haskell 54 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (16)

Die Fold-Funktionen:

foldl ⊗ e [a1, . . . , an] ergibt (. . . ((e⊗ a1)⊗ a2) . . .)⊗ an
foldr ⊗ e [a1, . . . , an] ergibt a1 ⊗ (a2 ⊗ (. . .⊗ (an ⊗ e) . . .))

Implementierung:

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f e [] = e

foldl f e (x:xs) = foldl f (e ‘f‘ x) xs

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e

foldr f e (x:xs) = x ‘f‘ (foldr f e xs)

foldl und foldr sind identisch, wenn die Elemente und der Operator
⊗ assoziativ mit neutralem Element e ist.
Für endliche Listen, in Bezug auf den berechneten Wert.

M. Schmidt-Schauß (05) Haskell 55 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (17)

Concat:

concat :: [[a]] -> [a]

concat = foldr (++) []

Beachte: foldl bei append wäre ineffizienter!

sum = foldl (+) 0

product = foldl (*) 1

haben schlechten Platzbedarf, besser strikte Variante von foldl:

foldl’ :: (a -> b -> a) -> a -> [b] -> a

foldl’ f e [] = e

foldl’ f e (x:xs) = let e’ = e ‘f‘ x in e’ ‘seq‘ foldl’ f e’ xs

M. Schmidt-Schauß (05) Haskell 56 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (18)

Beachte die Allgemeinheit der Typen von foldl / foldr

foldl :: (a -> b -> a) -> a -> [b] -> a

foldr :: (a -> b -> b) -> b -> [a] -> b

z.B. sind alle Elemente ungerade?

foldl (\xa xb -> xa && (odd xb)) True

xa und xb haben verschiedene Typen!

Analog mit foldr:

foldr (\xa xb -> (odd xa) && xb) True

M. Schmidt-Schauß (05) Haskell 57 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (19)

Varianten von foldl, foldr:

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 _ [] = error "foldr1 on an empty list"

foldr1 _ [x] = x

foldr1 f (x:xs) = f x (foldr1 f xs)

foldl1 :: (a -> a -> a) -> [a] -> a

foldl1 f (x:xs) = foldl f x xs

foldl1 _ [] = error "foldl1 on an empty list"

Beispiele

maximum :: (Ord a) => [a] -> a

maximum xs = foldl1 max xs

minimum :: (Ord a) => [a] -> a

minimum xs = foldl1 min xs

M. Schmidt-Schauß (05) Haskell 58 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (20)

Scanl, Scanr: Zwischenergebnisse von foldl, foldr

scanl ⊗ e [a1, a2, ..., an] = [e, e⊗ a1, (e⊗ a1)⊗ a2, . . .]
scanr ⊗ e [a1, a2, ..., an] = [. . . , an−1 ⊗ (an ⊗ e), an ⊗ e, e]

Es gilt:

last (scanl f e xs) = foldl f e xs

head (scanr f e xs) = foldr f e xs.

M. Schmidt-Schauß (05) Haskell 59 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (21)

scanl :: (a -> b -> a) -> a -> [b] -> [a]

scanl f e xs = e:(case xs of

[] -> []

(y:ys) -> scanl f (e ‘f‘ y) ys)

scanr :: (a -> b -> b) -> b -> [a] -> [b]

scanr _ e [] = [e]

scanr f e (x:xs) = f x q : qs

where qs@(q:_) = scanr f e xs

Anmerkung: “As”-Pattern Var@Pat

*> scanr (++) [] [[1,2],[3,4],[5,6],[7,8]] ←↩
[[1,2,3,4,5,6,7,8],[3,4,5,6,7,8],[5,6,7,8],[7,8],[]]

*> scanl (++) [] [[1,2],[3,4],[5,6],[7,8]] ←↩
[[],[1,2],[1,2,3,4],[1,2,3,4,5,6],[1,2,3,4,5,6,7,8]]

*> scanl (+) 0 [1..10] ←↩
[0,1,3,6,10,15,21,28,36,45,55]

*> scanr (+) 0 [1..10] ←↩

M. Schmidt-Schauß (05) Haskell 60 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (22)

Beispiele zur Verwendung von scan:

Fakultätsfolge:

faks = scanl (*) 1 [1..]

Z.B.

*> take 5 faks ←↩
[1,1,2,6,24,120]

Funktion, die alle Restlisten einer Liste berechnet:

tails xs = scanr (:) [] xs

Z.B.

*> tails [1,2,3] ←↩
[[1,2,3],[2,3],[3],[]]

M. Schmidt-Schauß (05) Haskell 61 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (22)

Beispiele zur Verwendung von scan:

Fakultätsfolge:

faks = scanl (*) 1 [1..]

Z.B.

*> take 5 faks ←↩
[1,1,2,6,24,120]

Funktion, die alle Restlisten einer Liste berechnet:

tails xs = scanr (:) [] xs

Z.B.

*> tails [1,2,3] ←↩
[[1,2,3],[2,3],[3],[]]

M. Schmidt-Schauß (05) Haskell 61 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (22b)

Funktionen, die alle Anfangslisten einer Liste berechnen:

map reverse (scanl (flip (:)) [] [1..100])

scanl (\x y-> x++[y]) [] [1..100]

map reverse (reverse (scanr (:) [] (reverse [1..100])))

Fragen dazu: sind die genau gleich?

welche ist wann besser?

M. Schmidt-Schauß (05) Haskell 62 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Standard-Listenfunktionen (23)

Partitionieren einer Liste

partition p xs = (filter p xs, filter (\x -> not (p x)) xs)

Effizienter:

partition :: (a -> Bool) -> [a] -> ([a], [a])

partition p [] = ([],[])

partition p (x:xs)

| p x = (x:r1,r2)

| otherwise = (r1,x:r2)

where (r1,r2) = partition p xs

Quicksort mit partition

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort [x] = [x]

quicksort (x:xs) = let (kleiner,groesser) = partition (<x) xs

in quicksort kleiner ++ (x:(quicksort groesser))

M. Schmidt-Schauß (05) Haskell 63 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Ströme (1)

Listen in Haskell können unendlich lang sein

Daher kann man Listen auch als Ströme auffassen

Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerät)

Bei der Stromverarbeitung muss man beachten:
Nie versuchen die gesamte Liste auszuwerten oder nur einen
Wert für den ganzen Strom zu berechnen.

D.h. Funktionen auf Strömen sollten strom-produzierend sein.

Grobe Regel: Funktion f ::[Int]->[Int] ist
strom-produzierend, wenn take n (f list)

für jede unendliche Liste und jedes n terminiert

Ungeeignet daher: reverse, length, foldl,

Geeignet: map, filter, zipWith, take, drop

M. Schmidt-Schauß (05) Haskell 64 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Ströme (1)

Listen in Haskell können unendlich lang sein

Daher kann man Listen auch als Ströme auffassen

Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerät)
Bei der Stromverarbeitung muss man beachten:
Nie versuchen die gesamte Liste auszuwerten oder nur einen
Wert für den ganzen Strom zu berechnen.

D.h. Funktionen auf Strömen sollten strom-produzierend sein.

Grobe Regel: Funktion f ::[Int]->[Int] ist
strom-produzierend, wenn take n (f list)

für jede unendliche Liste und jedes n terminiert

Ungeeignet daher: reverse, length, foldl,

Geeignet: map, filter, zipWith, take, drop

M. Schmidt-Schauß (05) Haskell 64 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Ströme (1)

Listen in Haskell können unendlich lang sein

Daher kann man Listen auch als Ströme auffassen

Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerät)
Bei der Stromverarbeitung muss man beachten:
Nie versuchen die gesamte Liste auszuwerten oder nur einen
Wert für den ganzen Strom zu berechnen.

D.h. Funktionen auf Strömen sollten strom-produzierend sein.

Grobe Regel: Funktion f ::[Int]->[Int] ist
strom-produzierend, wenn take n (f list)

für jede unendliche Liste und jedes n terminiert

Ungeeignet daher: reverse, length, foldl,

Geeignet: map, filter, zipWith, take, drop

M. Schmidt-Schauß (05) Haskell 64 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Ströme (2)

Einige Stromfunktionen für Strings:

words :: String -> [String]

Zerlegen einer Zeichenkette in eine Liste von Wörtern

lines :: String -> [String]

Zerlegen einer Zeichenkette in eine Liste der Zeilen

unlines :: [String] -> String

Einzelne Zeilen in einer Liste zu einem String zusammenfügen
(mit Zeilenumbrüchen)

Beispiele:

*> words "Haskell ist eine funktionale Programmiersprache" ←↩
["Haskell","ist","eine","funktionale","Programmiersprache"]

*> lines "1234\n5678\n90" ←↩
["1234","5678","90"]

*> unlines ["1234","5678","90"] "1234\n5678\n90\n"

M. Schmidt-Schauß (05) Haskell 65 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Ströme (2)

Mischen zweier sortierter Ströme zu einem sortierten Strom

merge :: (Ord t) => [t] -> [t] -> [t]

merge [] ys = ys

merge xs [] = xs

merge a@(x:xs) b@(y:ys)

| x <= y = x:merge xs b

| otherwise = y:merge a ys

Beispiel:

*> merge [1,3,5,6,7,9] [2,3,4,5,6] ←↩
[1,2,3,3,4,5,5,6,6,7,9]

M. Schmidt-Schauß (05) Haskell 66 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Ströme (3)

Doppelte Elemente entfernen

nub xs = nub’ xs []

where

nub’ [] _ = []

nub’ (x:xs) seen

| x ‘elem‘ seen = nub’ xs seen

| otherwise = x : nub’ xs (x:seen)

Anmerkungen:

seen merkt sich die bereits gesehenen Elemente

Laufzeit von nub ist quadratisch
(kann verbessert werden zu O(n log(n)) z.B. bei Zahlen).

elem e [] = False

elem e (x:xs)

| e == x = True

| otherwise = elem e xs

M. Schmidt-Schauß (05) Haskell 67 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Ströme (4)

Doppelte Elemente aus sortierter Liste entfernen:

nubSorted (x:y:xs)

| x == y = nubSorted (y:xs)

| otherwise = x:(nubSorted (y:xs))

nubSorted y = y

ist linear in der Länge der Liste.

M. Schmidt-Schauß (05) Haskell 68 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Ströme (5)

Mischen der Vielfachen von 3,5 und 7:

> nubSorted $ merge (map (3) [1..])

> (merge (map (5) [1..]) (map (7*) [1..])) ←↩
[3,5,6,7,9,10,12,14,15,18,20,..

M. Schmidt-Schauß (05) Haskell 69 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Wörterbuch

Lookup

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b

lookup key [] = Nothing

lookup key ((x,y):xys)

| key == x = Just y

| otherwise = lookup key xys

Beispiele:

*> lookup 5 [(1,’A’), (2,’B’), (4,’C’), (5,’F’)] ←↩
Just ’F’

*> lookup 3 [(1,’A’), (2,’B’), (4,’C’), (5,’F’)] ←↩
Nothing

M. Schmidt-Schauß (05) Haskell 70 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Mengen (1)

Any und All: Wie Quantoren

any _ [] = False all _ [] = True

any p (x:xs) all p (x:xs)

| (p x) = True | (p x) = all xs

| otherwise = any xs | otherwise = False

Beispiele:

*> all even [1,2,3,4] ←↩
False

*> all even [2,4] ←↩
True

*> any even [1,2,3,4] ←↩
True

Nur bedingt als Stromfunktionen geeignet.
M. Schmidt-Schauß (05) Haskell 71 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Mengen (2)

Delete: Löschen eines Elements

delete :: (Eq a) => a -> [a] -> [a]

delete e (x:xs)

| e == x = xs

| otherwise = x:(delete e xs)

Mengendifferenz: \\

(\\) :: (Eq a) => [a] -> [a] -> [a]

(\\) = foldl (flip delete)

dabei dreht flip die Argumente einer Funktion um:

flip :: (a -> b -> c) -> b -> a -> c

flip f a b = f b a

M. Schmidt-Schauß (05) Haskell 72 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Mengen (2b)

Beispiele:

*> delete 3 [1,2,3,4,5,3,4,3] ←↩
[1,2,4,5,3,4,3]

*> [1,2,3,4,4] \\ [9,6,4,4,3,1] ←↩
[2]

*> [1,2,3,4] \\ [9,6,4,4,3,1] ←↩
[2]

M. Schmidt-Schauß (05) Haskell 73 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Mengen (3)
Vereinigung und Schnitt

union :: (Eq a) => [a] -> [a] -> [a]

union xs ys = xs ++ (ys \\ xs)

intersect :: (Eq a) => [a] -> [a] -> [a]

intersect xs ys = filter (\y -> any (== y) ys) xs

*> union [1,2,3,4,4] [9,6,4,3,1] ←↩
[1,2,3,4,4,9,6]

*> union [1,2,3,4,4] [9,6,4,4,3,1] ←↩
[1,2,3,4,4,9,6]

*> union [1,2,3,4,4] [9,9,6,4,4,3,1] ←↩
[1,2,3,4,4,9,6]

*> intersect [1,2,3,4,4] [4,4] ←↩
[4,4]

*> intersect [1,2,3,4] [4,4] ←↩
[4]

*> intersect [1,2,3,4,4] [4] ←↩
[4,4]

M. Schmidt-Schauß (05) Haskell 74 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Listen als Mengen (4)

Vereinigung und Schnitt

Mengenoperationen sind schneller wenn:

man eine lineare Ordnung auf den Elementen hat
und sortierte Listen verarbeitet.

Mengenoperationen auf Mengen als Bäume . . . (wie DB)

Nachschauen in Data.List

M. Schmidt-Schauß (05) Haskell 75 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

ConcatMap

Konkatiniert die Ergebnislisten: ConcatMap

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap f = concat . map f

*> concatMap (\x-> take x [1..]) [3..7] ←↩
[1,2,3,1,2,3,4,1,2,3,4,5,1,2,3,4,5,6,1,2,3,4,5,6,7]

M. Schmidt-Schauß (05) Haskell 76 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions

Spezielle Syntax zur Erzeugung und Verarbeitung von Listen

ZF-Ausdrücke (nach der Zermelo-Fränkel Mengenlehre)

Syntax: [Expr | qual1,...,qualn]

• Expr: ein Ausdruck

• FV (Expr) sind durch qual1,...,qualn gebunden

• quali ist:

ein Generator der Form pat <- Expr, oder

ein Guard, d.h. ein Ausdruck booleschen Typs,

oder eine Deklaration lokaler Bindungen der Form
let x1=e1,...,xn=en (ohne in-Ausdruck!) ist.

M. Schmidt-Schauß (05) Haskell 77 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele

Liste der natürlichen Zahlen

[x | x <- [1..]]

Kartesisches Produkt

[(x,y) | x <- [1..], y <- [1..]]

*> take 10 [(x,y) | x <- [1..], y <- [1..]] ←↩
[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)]

Liste aller ungeraden Zahlen

[x | x <- [1..], odd x]

Liste aller Quadratzahlen

[x*x | x <- [1..]]

M. Schmidt-Schauß (05) Haskell 78 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele

Liste der natürlichen Zahlen

[x | x <- [1..]]

Kartesisches Produkt

[(x,y) | x <- [1..], y <- [1..]]

*> take 10 [(x,y) | x <- [1..], y <- [1..]] ←↩
[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)]

Liste aller ungeraden Zahlen

[x | x <- [1..], odd x]

Liste aller Quadratzahlen

[x*x | x <- [1..]]

M. Schmidt-Schauß (05) Haskell 78 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele

Liste der natürlichen Zahlen

[x | x <- [1..]]

Kartesisches Produkt

[(x,y) | x <- [1..], y <- [1..]]

*> take 10 [(x,y) | x <- [1..], y <- [1..]] ←↩
[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)]

Liste aller ungeraden Zahlen

[x | x <- [1..], odd x]

Liste aller Quadratzahlen

[x*x | x <- [1..]]

M. Schmidt-Schauß (05) Haskell 78 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele

Liste der natürlichen Zahlen

[x | x <- [1..]]

Kartesisches Produkt

[(x,y) | x <- [1..], y <- [1..]]

*> take 10 [(x,y) | x <- [1..], y <- [1..]] ←↩
[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)]

Liste aller ungeraden Zahlen

[x | x <- [1..], odd x]

Liste aller Quadratzahlen

[x*x | x <- [1..]]

M. Schmidt-Schauß (05) Haskell 78 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele (2)

Liste aller Paare (Zahl, Quadrat der Zahl)

[(y,x*x)| x <- [1..], let y = x]

[a | (a,_,_,_) <- [(x,x,y,y) | x <- [1..3], y <- [1..3]]] ←↩
[1,1,1,2,2,2,3,3,3]

Map, Filter und Concat

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

concat xss = [y | xs <- xss, y <- xs]

M. Schmidt-Schauß (05) Haskell 79 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele (2)

Liste aller Paare (Zahl, Quadrat der Zahl)

[(y,x*x)| x <- [1..], let y = x]

[a | (a,_,_,_) <- [(x,x,y,y) | x <- [1..3], y <- [1..3]]] ←↩
[1,1,1,2,2,2,3,3,3]

Map, Filter und Concat

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

concat xss = [y | xs <- xss, y <- xs]

M. Schmidt-Schauß (05) Haskell 79 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele (2)

Liste aller Paare (Zahl, Quadrat der Zahl)

[(y,x*x)| x <- [1..], let y = x]

[a | (a,_,_,_) <- [(x,x,y,y) | x <- [1..3], y <- [1..3]]] ←↩
[1,1,1,2,2,2,3,3,3]

Map, Filter und Concat

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

concat xss = [y | xs <- xss, y <- xs]

M. Schmidt-Schauß (05) Haskell 79 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele (2)

Liste aller Paare (Zahl, Quadrat der Zahl)

[(y,x*x)| x <- [1..], let y = x]

[a | (a,_,_,_) <- [(x,x,y,y) | x <- [1..3], y <- [1..3]]] ←↩
[1,1,1,2,2,2,3,3,3]

Map, Filter und Concat

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

concat xss = [y | xs <- xss, y <- xs]

M. Schmidt-Schauß (05) Haskell 79 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List Comprehensions: Beispiele (3)

Quicksort:

qsort (x:xs) = qsort [y | y <- xs, y <= x]

++ [x]

++ qsort [y | y <- xs, y > x]

qsort x = x

Beispiel: Kakuro-Rätsel:
Lösung mittels List Comprehensions

Idee Durchmusterung aller Möglichkeiten.
Generatoren und Tests.

M. Schmidt-Schauß (05) Haskell 80 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List-Comprehensions Beispiel-Anwendung

(cit. Aus Frankfurter Rundschau, Nov, 2023)
M. Schmidt-Schauß (05) Haskell 81 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

List-Comprehensions Beispiel-Anwendung

ad-hoc programmiert: probiert alle Möglichkeiten aus.
Element x-i-j: Zahl in Spalte i, Zeile j
Tests: Ziffern verschieden in einem Zahlblock

Summen stimmen mit Vorgabe überein.
import Data.List

sol = [((x16,x17),(x21,x22,x26,x27),(x36,x37,x38),(x41,x42,x47,x48),(x51,x52,x53),(x62,x63,x67,x68),

(x72,x73)) |

x16 <-[1..8], x17 <- [9-x16], x21 <- [2,3,4,5,8,9],

x22<- [2,3,4,5,8,9]\\[x21],

x26<-[2,3,4,5,8,9]\\[x21,x22,x16], x27 <- [2,3,4,5,8,9]\\[x21,x22,x26,x17],x21+x22+x26+x27 == 19,

x36<-[1,2,3,5,6,7,8,9]\\[x16,x26], x37<-[1,3,5,6,7,8,9] \\ [x17,x27,x36],

x38<-[1,2,3,5,6,8,9] \\ [x36,x37], x36+x37+x38 == 11,

x47<-[1,3,4,5] \\ [x17,x27,x37], x48 <- [6-x47] \\ [x38],

x67<-[30-x17-x27-x37-x47-2] \\ [2,4,7,x17,x27,x37,x47], x67 <=9,

x68 <- [1..9] \\ [2,4,7,x38,x48], x68 == 8 - x38-x48,x62<-[1,3,5,6,8,9]\\[x67,x68],

x63<-[20-x62-x67-x68],

x41 <- [2..6]\\[x21], x42 <- [7-x41], x42 /= x22, x51 <- [14-x21-x41] \\ [4,1,x21,x41],

x52 <- [1..9] \\ [x22,7,x42,x51,4],

x53 <- [15-x51-x52] \\ [x51,x52,4], x53 > 0,

x62 <- [1..9] \\ [x22,7,x42,x52,2,4,x67,x68],

x63 <- [20-x62-x67-x68] \\ [x53,x62,7,4,2,x67,68], x63 > 0,

30 == x17+x27+x37+x47+2+x67,

x72 <- [23 - x22-x42-x52-x62] \\ [x22,x42,x52,x63], x72 >0, x72 < 7,

x73 <- [7-x72] \\ [x53,x63],

x53+x63+x73 == 8,

x17+x27+x37+x47+2+x67 == 30

]

M. Schmidt-Schauß (05) Haskell 82 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung von List-Comprehensionen in ZF-freies Haskell

[e | True] = [e]

[e | q] = [e | q, True]

[e | b, Q] = if b then [e | Q] else []

[e | p <- l, Q] = let ok p = [e | Q]

ok _ = []

in concatMap ok l

[e | let decls, Q] = let decls in [e | Q]

(wobei Schwarzes 1-1 gemeint ist, und Buntes sind Variablen)

ok eine neue Variable,

b ein Guard,

q ein Generator, eine lokale Bindung
oder ein Guard (nicht True)

Q eine Folge von Generatoren, Deklarationen und Guards.

M. Schmidt-Schauß (05) Haskell 83 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung in ZF-freies Haskell: Beispiel

[x*y | x <- xs, y <- ys, x > 2, y < 3]

= let ok x = [x*y | y <- ys, x > 2, y < 3]

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = [x*y | x > 2, y < 3]

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

M. Schmidt-Schauß (05) Haskell 84 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung in ZF-freies Haskell: Beispiel

[x*y | x <- xs, y <- ys, x > 2, y < 3]

= let ok x = [x*y | y <- ys, x > 2, y < 3]

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = [x*y | x > 2, y < 3]

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

M. Schmidt-Schauß (05) Haskell 84 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung in ZF-freies Haskell: Beispiel

[x*y | x <- xs, y <- ys, x > 2, y < 3]

= let ok x = [x*y | y <- ys, x > 2, y < 3]

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = [x*y | x > 2, y < 3]

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

M. Schmidt-Schauß (05) Haskell 84 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung in ZF-freies Haskell: Beispiel

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3] else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3, True] else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then

(if y < 3 then [x*y | True] else [])

else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

M. Schmidt-Schauß (05) Haskell 85 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung in ZF-freies Haskell: Beispiel

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3] else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3, True] else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then

(if y < 3 then [x*y | True] else [])

else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

M. Schmidt-Schauß (05) Haskell 85 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung in ZF-freies Haskell: Beispiel

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3] else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3, True] else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then

(if y < 3 then [x*y | True] else [])

else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

M. Schmidt-Schauß (05) Haskell 85 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Listenfunktionen Ströme Weitere List Comprehensions

Übersetzung in ZF-freies Haskell: Beispiel

[x*y | x <- xs, y <- ys, x > 2, y < 3]

= let ok x = let ok’ y = if x > 2 then

(if y < 3 then [x*y] else [])

else []

ok’ _ = []

in concatMap ok’ ys

ok _ = []

in concatMap ok xs

Die Übersetzung funktioniert, aber ist nicht optimal,
da Listen generiert und wieder abgebaut werden;

und bei x <- xs unnötige Pattern-Fallunterscheidung

M. Schmidt-Schauß (05) Haskell 86 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Rekursive Datenstrukturen:

Bäume in Haskell

Binäre Bäume – N-äre Bäume – Funktionen auf Bäumen –
Syntaxbäume

M. Schmidt-Schauß (05) Haskell 87 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Rekursive Datenstrukturen: Bäume
Binäre Bäume mit (polymorphen) Blattmarkierungen:

data BBaum a = Blatt a | Knoten (BBaum a) (BBaum a)

deriving(Eq,Show)

BBaum ist Typkonstruktor, Blatt und Knoten sind Datenkonstruktoren

Typ: BBaum Int

ss ++

ww %% zz ''

�� ��
�� ��

7

��

		 �� 		 ��
5 6

		 �� �� ��
1 2 3 4 8 9 10 11

beispielBaum =

Knoten

(Knoten

(Knoten

(Knoten (Blatt 1) (Blatt 2))

(Knoten (Blatt 3) (Blatt 4))

)

(Knoten (Blatt 5) (Blatt 6))

)

(Knoten

(Blatt 7)

(Knoten

(Knoten (Blatt 8) (Blatt 9))

(Knoten (Blatt 10) (Blatt 11))

)

)

M. Schmidt-Schauß (05) Haskell 88 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Rekursive Datenstrukturen: Bäume
Binäre Bäume mit (polymorphen) Blattmarkierungen:

data BBaum a = Blatt a | Knoten (BBaum a) (BBaum a)

deriving(Eq,Show)

BBaum ist Typkonstruktor, Blatt und Knoten sind Datenkonstruktoren

Typ: BBaum Int

ss ++

ww %% zz ''

�� ��
�� ��

7

��

		 �� 		 ��
5 6

		 �� �� ��
1 2 3 4 8 9 10 11

beispielBaum =

Knoten

(Knoten

(Knoten

(Knoten (Blatt 1) (Blatt 2))

(Knoten (Blatt 3) (Blatt 4))

)

(Knoten (Blatt 5) (Blatt 6))

)

(Knoten

(Blatt 7)

(Knoten

(Knoten (Blatt 8) (Blatt 9))

(Knoten (Blatt 10) (Blatt 11))

)

)

M. Schmidt-Schauß (05) Haskell 88 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf Bäumen (1)

Summe aller Blattmarkierungen

bSum (Blatt a) = a

bSum (Knoten links rechts) = (bSum links) + (bSum rechts)

Ein Beispielaufruf:

*> bSum beispielBaum ←↩
66

Liste der Blätter

bRand (Blatt a) = [a]

bRand (Knoten links rechts) = (bRand links) ++ (bRand rechts)

Test:

*> bRand beispielBaum ←↩
[1,2,3,4,5,6,7,8,9,10,11]

M. Schmidt-Schauß (05) Haskell 89 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf Bäumen (1)

Summe aller Blattmarkierungen

bSum (Blatt a) = a

bSum (Knoten links rechts) = (bSum links) + (bSum rechts)

Ein Beispielaufruf:

*> bSum beispielBaum ←↩
66

Liste der Blätter

bRand (Blatt a) = [a]

bRand (Knoten links rechts) = (bRand links) ++ (bRand rechts)

Test:

*> bRand beispielBaum ←↩
[1,2,3,4,5,6,7,8,9,10,11]

M. Schmidt-Schauß (05) Haskell 89 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf Bäumen (2)

Map auf Bäumen

bMap f (Blatt a) = Blatt (f a)

bMap f (Knoten links rechts) = Knoten (bMap f links) (bMap f rechts)

Beispiel:

*> bMap (^2) beispielBaum ←↩
Knoten (Knoten (Knoten (Knoten (Blatt 1) (Blatt 4))

(Knoten (Blatt 9) (Blatt 16))) (Knoten (Blatt 25) (Blatt 36)))

(Knoten (Blatt 49) (Knoten (Knoten (Blatt 64) (Blatt 81))

(Knoten (Blatt 100) (Blatt 121))))

Die Anzahl der Blätter eines Baumes:

anzahlBlaetter = bSum . bMap (\x -> 1)

M. Schmidt-Schauß (05) Haskell 90 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf Bäumen (3)
Element-Test

bElem e (Blatt a)

| e == a = True

| otherwise = False

bElem e (Knoten links rechts) = (bElem e links) || (bElem e rechts)

Einige Beispielaufrufe:

*> 11 ‘bElem‘ beispielBaum ←↩
True

*> 1 ‘bElem‘ beispielBaum ←↩
True

*> 20 ‘bElem‘ beispielBaumm ←↩
False

*> 0 ‘bElem‘ beispielBaum m ←↩
False

M. Schmidt-Schauß (05) Haskell 91 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf Bäumen (4)

Fold auf Bäumen

bFold op (Blatt a) = a

bFold op (Knoten a b) = op (bFold op a) (bFold op b)

Damit kann man z.B. die Summe und das Produkt berechnen:

*> bFold (+) beispielBaum ←↩
66

> bFold () beispielBaum ←↩
39916800

M. Schmidt-Schauß (05) Haskell 92 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf Bäumen (4b)

Allgemeineres Fold auf Bäumen:

foldbt :: (a -> b -> b) -> b -> BBaum a -> b

foldbt op a (Blatt x) = op x a

foldbt op a (Knoten x y) = (foldbt op (foldbt op a y) x)

Der Typ des Ergebnisses kann anders sein als der Typ der
Blattmarkierung
Zum Beispiel: Rand eines Baumes:

*> foldbt (:) [] beispielBaum ←↩
[1,2,3,4,5,6,7,8,9,10,11]

M. Schmidt-Schauß (05) Haskell 93 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Haskell Bäume Data.Tree

Data.Tree

Hackage-Bibliothek zu gelabelten n-ären Bäumen

data Tree a =

Node {rootLabel :: a

subForest :: Forest a }

type Forest a = [Tree a]

Tests

Data.Tree> let t1 = Node {rootLabel= 1, subForest = []} ←↩
Data.Tree> let t2= Node{rootLabel= 2,subForest = [t1]} ←↩
Data.Tree> t2 ←↩
Node {rootLabel = 2, subForest = [Node {rootLabel = 1,

subForest = []}]}

M. Schmidt-Schauß (05) Haskell 94 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

N-äre Bäume

data NBaum a = NBlatt a | NKnoten [NBaum a]

deriving(Eq,Show)

beispiel = NKnoten [NBlatt 1,

NKnoten [NBlatt 2, NBlatt 3, NBlatt 4],

NKnoten [NKnoten [NBlatt 5], NBlatt 6]]

ww �� **1

�� ����
�� ��

2 3 4

��

6

5

M. Schmidt-Schauß (05) Haskell 95 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Bäume mit Knotenmarkierungen

Beachte: BBaum und NBaum haben nur Markierungen der Blätter!

Bäume mit Markierung aller Knoten

data BinBaum a = BinBlatt a | BinKnoten a (BinBaum a)(BinBaum a)

deriving(Eq,Show)

A

tt ,,B

yy %%

C

uu ##
D

�� ��

E

�� ��

F

}} ""

G

H I J K L

�� ��

M

�� ��
N O P Q

beispielBinBaum =

BinKnoten ’A’

(BinKnoten ’B’

(BinKnoten ’D’ (BinBlatt ’H’) (BinBlatt ’I’))

(BinKnoten ’E’ (BinBlatt ’J’) (BinBlatt ’K’))

)

(BinKnoten ’C’

(BinKnoten ’F’

(BinKnoten ’L’ (BinBlatt ’N’) (BinBlatt ’O’))

(BinKnoten ’M’ (BinBlatt ’P’) (BinBlatt ’Q’))

)

(BinBlatt ’G’)

)

M. Schmidt-Schauß (05) Haskell 96 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Bäume mit Knotenmarkierungen

Beachte: BBaum und NBaum haben nur Markierungen der Blätter!

Bäume mit Markierung aller Knoten

data BinBaum a = BinBlatt a | BinKnoten a (BinBaum a)(BinBaum a)

deriving(Eq,Show)

A

tt ,,B

yy %%

C

uu ##
D

�� ��

E

�� ��

F

}} ""

G

H I J K L

�� ��

M

�� ��
N O P Q

beispielBinBaum =

BinKnoten ’A’

(BinKnoten ’B’

(BinKnoten ’D’ (BinBlatt ’H’) (BinBlatt ’I’))

(BinKnoten ’E’ (BinBlatt ’J’) (BinBlatt ’K’))

)

(BinKnoten ’C’

(BinKnoten ’F’

(BinKnoten ’L’ (BinBlatt ’N’) (BinBlatt ’O’))

(BinKnoten ’M’ (BinBlatt ’P’) (BinBlatt ’Q’))

)

(BinBlatt ’G’)

)

M. Schmidt-Schauß (05) Haskell 96 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf BinBaum (1)

Knoten in Preorder-Reihenfolge (Wurzel, links, rechts):

preorder :: BinBaum t -> [t]

preorder (BinBlatt a) = [a]

preorder (BinKnoten a l r) = a:(preorder l) ++ (preorder r)

preorder beispielBinBaum ----> "ABDHIEJKCFLNOMPQG"

A

tt ,,B

yy %%

C

uu ##
D

�� ��

E

�� ��

F

}} ""

G

H I J K L

�� ��

M

�� ��
N O P Q

M. Schmidt-Schauß (05) Haskell 97 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf BinBaum (2)

Knoten in Inorder-Reihenfolge (links, Wurzel, rechts):

inorder :: BinBaum t -> [t]

inorder (BinBlatt a) = [a]

inorder (BinKnoten a l r) = (inorder l) ++ a:(inorder r)

*> inorder beispielBinBaum ←↩
"HDIBJEKANLOFPMQCG"

A

tt ,,B

yy %%

C

uu ##
D

�� ��

E

�� ��

F

}} ""

G

H I J K L

�� ��

M

�� ��
N O P Q

M. Schmidt-Schauß (05) Haskell 98 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf BinBaum (3)

Knoten in Post-Order Reihenfolge (links, rechts, Wurzel)

postorder (BinBlatt a) = [a]

postorder (BinKnoten a l r) =

(postorder l) ++ (postorder r) ++ [a]

*> postorder beispielBinBaum ←↩
"HIDJKEBNOLPQMFGCA"

A

tt ,,B

yy %%

C

uu ##
D

�� ��

E

�� ��

F

}} ""

G

H I J K L

�� ��

M

�� ��
N O P Q

M. Schmidt-Schauß (05) Haskell 99 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf BinBaum (2)

Level-Order (Stufenweise, wie Breitensuche)

Schlecht:

levelorderSchlecht b =

concat [nodesAtDepthI i b | i <- [0..depth b]]

where

nodesAtDepthI 0 (BinBlatt a) = [a]

nodesAtDepthI i (BinBlatt a) = []

nodesAtDepthI 0 (BinKnoten a l r) = [a]

nodesAtDepthI i (BinKnoten a l r) = (nodesAtDepthI (i-1) l)

++ (nodesAtDepthI (i-1) r)

depth (BinBlatt _) = 0

depth (BinKnoten _ l r) = 1+(max (depth l) (depth r))

*> levelorderSchlecht beispielBinBaum ←↩
"ABCDEFGHIJKLMNOPQ"

M. Schmidt-Schauß (05) Haskell 100 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktionen auf BinBaum (3)

Level-Order (Stufenweise, wie Breitensuche)

Besser:

levelorder b = loForest [b]

where

loForest xs = map root xs ++ concatMap (loForest . subtrees) xs

root (BinBlatt a) = a

root (BinKnoten a _ _) = a

subtrees (BinBlatt _) = []

subtrees (BinKnoten _ l r) = [l,r]

*> levelorder beispielBinBaum ←↩
"ABCDEFGHIJKLMNOPQ"

M. Schmidt-Schauß (05) Haskell 101 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Bäume mit Knoten und Kantenmarkierungen

data BinBaumMitKM a b =

BiBlatt a

| BiKnoten a (b, BinBaumMitKM a b) (b,BinBaumMitKM a b)

deriving(Eq,Show)

A
0

~~

1

B

2

��
3

��

C

4

��
5

��
D E F G

beispielBiBaum =

BiKnoten ’A’

(0,BiKnoten ’B’

(2,BiBlatt ’D’)

(3,BiBlatt ’E’))

(1,BiKnoten ’C’

(4,BiBlatt ’F’)

(5,BiBlatt ’G’))

M. Schmidt-Schauß (05) Haskell 102 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Funktion auf BinBaumMitKM

Map mit 2 Funktionen: auf Blatt- und Knoten-Markierung

biMap f g (BiBlatt a) = BiBlatt (f a)

biMap f g (BiKnoten a (kl,links) (kr,rechts) =

BiKnoten (f a) (g kl, biMap f g links) (g kr, biMap f g rechts)

Beispiel

*> biMap toLower even beispielBiBaum ←↩
BiKnoten ’a’

(True,BiKnoten ’b’ (True,BiBlatt ’d’) (False,BiBlatt ’e’))

(False,BiKnoten ’c’ (True,BiBlatt ’f’) (False,BiBlatt ’g’))

M. Schmidt-Schauß (05) Haskell 103 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Anmerkung zum $-Operator

Definition:

f $ x = f x

wobei Priorität ganz niedrig, z.B.

map (*3) $ filter (>5) $ concat [[1,1],[2,5],[10,11]]

wird als

map (*3) (filter (>5) (concat [[1,1],[2,5],[10,11]]))

geklammert

M. Schmidt-Schauß (05) Haskell 104 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Syntaxbäume

Auch Syntaxbäume sind Bäume

Beispiel: Einfache arithmetische Ausdrücke:

E ::= (E + E) | (E ∗ E) | Z
Z ::= 0Z′ | . . . | 9Z′

Z′ ::= ε | Z

Als Haskell-Datentyp (infix-Konstruktoren müssen mit : beginnen)

data ArEx = ArEx :+: ArEx

| ArEx :*: ArEx

| Zahl Int
alternativ

data ArEx = Plus ArEx ArEx

| Mult ArEx ArEx

| Zahl Int

Z.B. (3 + 4) ∗ (5 + (6 + 7)) als Objekt vom Typ ArEx:

((Zahl 3) :+: (Zahl 4)) :*: ((Zahl 5) :+: ((Zahl 6) :+: (Zahl 7)))

M. Schmidt-Schauß (05) Haskell 105 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Syntaxbäume (2)

Interpreter als Funktion in Haskell:

interpretArEx :: ArEx -> Int

interpretArEx (Zahl i) = i

interpretArEx (e1 :+: e2) = (interpretArEx e1) + (interpretArEx e2)

interpretArEx (e1 :*: e2) = (interpretArEx e1) * (interpretArEx e2)

M. Schmidt-Schauß (05) Haskell 106 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Syntaxbäume: Lambda-Kalkül

Syntax des Lambda-Kalküls als Datentyp:

data LExp v =

Var v -- x

| Lambda v (LExp v) -- \v.e

| App (LExp v) (LExp v) -- (e1 e2)

Z.B. s = (λx.x) (λy.y):

s :: LExp String

s = App (Lambda "x" (Var "x")) (Lambda "y" (Var "y"))

M. Schmidt-Schauß (05) Haskell 107 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Implementierung der NO-Reduktion

Versuche eine β-Reduktion durchzuführen, dabei frische Variablen
mitführen zum Umbenennen

tryNOBeta :: (Eq b) => LExp b -> [b] -> Maybe (LExp b, [b])

• Einfachster Fall: Beta-Reduktion ist auf Top-Level möglich:

tryNOBeta (App (Lambda v e) e2) freshvars =

let (e’,vars) = substitute freshvars e e2 v

in Just (e’,vars)

• Andere Anwendungen: gehe links ins Argument (rekursiv):

tryNOBeta (App e1 e2) freshvars =

case tryNOBeta e1 freshvars of

Nothing -> Nothing

Just (e1’,vars) -> (Just ((App e1’ e2), vars))

• Andere Fälle: Keine Reduktion möglich:

tryNOBeta _ vars = Nothing

M. Schmidt-Schauß (05) Haskell 108 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Implementierung der NO-Reduktion

Versuche eine β-Reduktion durchzuführen, dabei frische Variablen
mitführen zum Umbenennen

tryNOBeta :: (Eq b) => LExp b -> [b] -> Maybe (LExp b, [b])

• Einfachster Fall: Beta-Reduktion ist auf Top-Level möglich:

tryNOBeta (App (Lambda v e) e2) freshvars =

let (e’,vars) = substitute freshvars e e2 v

in Just (e’,vars)

• Andere Anwendungen: gehe links ins Argument (rekursiv):

tryNOBeta (App e1 e2) freshvars =

case tryNOBeta e1 freshvars of

Nothing -> Nothing

Just (e1’,vars) -> (Just ((App e1’ e2), vars))

• Andere Fälle: Keine Reduktion möglich:

tryNOBeta _ vars = Nothing

M. Schmidt-Schauß (05) Haskell 108 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Implementierung der NO-Reduktion (2)

Implementierung der
no,∗−−→-Reduktion:

reduceNO e = let (e’,v’) = rename e fresh

in tryNO e’ v’

where

fresh = ["x_" ++ show i | i <- [1..]]

tryNO e vars = case tryNOBeta e vars of

Nothing -> e

Just (e’,vars’) -> tryNO e’ vars’

M. Schmidt-Schauß (05) Haskell 109 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Implementierung der NO-Reduktion (3)

Hilfsfunktion: Substitution mit Umbenennung:

substitute freshvars (Var v) expr2 var

| v == var = rename (expr2) freshvars

| otherwise = (Var v,freshvars)

substitute freshvars (App e1 e2) expr2 var =

let (e1’,vars’) = substitute freshvars e1 expr2 var

(e2’,vars’’) = substitute vars’ e2 expr2 var

in (App e1’ e2’, vars’’)

substitute freshvars (Lambda v e) expr2 var =

let (e’,vars’) = substitute freshvars e expr2 var

in (Lambda v e’,vars’)

M. Schmidt-Schauß (05) Haskell 110 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen Datentypen für Bäume Syntaxbäume

Implementierung der NO-Reduktion (4)

Hilfsfunktion: Umbenennung eines Ausdrucks

rename expr freshvars = rename_it expr [] freshvars

where

rename_it (Var v) renamings freshvars =

case lookup v renamings of

Nothing -> (Var v,freshvars)

Just v’ -> (Var v’,freshvars)

rename_it (App e1 e2) renamings freshvars =

let (e1’,vars’) = rename_it e1 renamings freshvars

(e2’,vars’’) = rename_it e2 renamings vars’

in (App e1’ e2’, vars’’)

rename_it (Lambda v e) renamings (f:freshvars) =

let (e’,vars’) = rename_it e ((v,f):renamings) freshvars

in (Lambda f e’,vars’)

M. Schmidt-Schauß (05) Haskell 111 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Typdefinitionen in Haskell

Drei syntaktische Möglichkeiten in Haskell

data

type

newtype

Verwendung von data haben wir bereits ausgiebig gesehen

M. Schmidt-Schauß (05) Haskell 112 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Typdefinitionen in Haskell (2)

type; Variante von Typdefinitionen.

Mit type definiert man Typsynonyme, d.h:

Neuer Name für bekannten Typ

Beispiele:

type IntCharPaar = (Int,Char)

type Studenten = [Student]

type MyList a = [a]

Sinn davon: Verständlicher, z.B.

alleStudentenMitA :: Studenten -> Studenten

alleStudentenMitA = map nachnameMitA

M. Schmidt-Schauß (05) Haskell 113 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Typdefinitionen in Haskell (2)

type; Variante von Typdefinitionen.

Mit type definiert man Typsynonyme, d.h:

Neuer Name für bekannten Typ

Beispiele:

type IntCharPaar = (Int,Char)

type Studenten = [Student]

type MyList a = [a]

Sinn davon: Verständlicher, z.B.

alleStudentenMitA :: Studenten -> Studenten

alleStudentenMitA = map nachnameMitA

M. Schmidt-Schauß (05) Haskell 113 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Typdefinitionen in Haskell (3)

Typdefinition mit newtype:

newtype ist sehr ähnlich zu type

Mit newtype-definierte Typen dürfen eigene Klasseninstanz
für Typklassen haben

Mit type-definierte Typen aber nicht.

Mit newtype-definierte Typen haben einen neuen Konstruktor

case und pattern match für Objekte vom newtype-definierten
Typ sind immer erfolgreich.

M. Schmidt-Schauß (05) Haskell 114 / 115

Zahlen Datentypen Listen Bäume Typdefinitionen

Typdefinitionen in Haskell (4)

Beispiel für newtype:

newtype Studenten’ = St [Student]

Diese Definition kann man sich vorstellen als

data Studenten’ = St [Student]

Ist aber nicht semantisch äquivalent dazu, da
Terminierungsverhalten anders

Vorteil newtype vs. data: Der Compiler weiß, dass es nur ein
Typsynonym ist und kann optimieren:
case-Ausdrücke dazu werden eliminiert und durch direkte Zugriffe
ersetzt.

M. Schmidt-Schauß (05) Haskell 115 / 115

	Zahlen
	Algebraische Datentypen
	Listen
	Bäume
	Typdefinitionen

