GOETHE @,

UNIVERSITAT

FRANKFURT AM MAIN

Einfiihrung in die
Funktionale Programmierung:

Haskell
Prof. Dr. Manfred Schmidt-SchauB

WS 2023/24

Ubersicht T

........

© Zahlen

© Algebraische Datentypen
o Aufzdhlungstypen
@ Produkttypen
@ Parametrisierte Datentypen
@ Rekursive Datentypen

© Listen

@ Listenfunktionen

@ Strome

o Weitere

@ List Comprehensions

@ Biume

@ Datentypen fiir Baume
@ Syntaxbdume

© Typdefinitionen

GOETHE,

Ziele des Kapitels OVERS)

o Ubersicht iiber die Konstrukte von Haskell
o Ubersetzung der Konstrukte in KFPTSP+-seq

@ Programmierung in Haskell mit Datenstrukturen

Wir erdrtern nicht:

@ Die Ubersetzung von let und where, (umfangreich und wg.
rekursiven Bindungen)
Ubersetzung in KFPTSP+seq ist mdglich durch
Fixpunktkombinatoren

M. Schmidt-SchauB

GOETHE !g
IVERS

UN ITAT

Zahlen in Haskell und KFPTSP+seq

Eingebaute Zahlen in Haskell ; Peano-Kodierung fiir KFPTSP+-seq

M. Schmidt-SchauB

ic|e

Haskell: Zahlen

Eingebaut:

Ganze Zahlen beschrankter GroBe: Int

o Ganze Zahlen beliebiger GroBe: Integer

@ Gleitkommazahlen: Float

@ Gleitkommazahlen mit doppelter Genauigkeit: Double
°

Rationale Zahlen: Rational
(verallgemeinert Ratio «, wobei
Rational = Ratio Integer)

M. Schmidt-SchauB

Arithmetische Operationen

ic|e

Rechenoperationen:
e + fiir die Addition
e - fiir die Subtraktion
@ * fiir die Multiplikation
@ / fiir die Division
@ mod , div

Die Operatoren sind iiberladen. Dafiir gibt es Typklassen.
Typvon (+) :: Num a => a -> a -> a

Genaue Behandlung von Typklassen: spater

M. Schmidt-SchauB

Prafix / Infix el

Anmerkung zum Minuszeichen:

@ Mehr Klammern als man denkt: 5 + -6 geht nicht,
richtig: 5 + (-6)
Das Zeichen — wird speziell (vom Parser) gehandhabt.

@ In Haskell kdnnen Prafix-Operatoren (Funktionen) auch infix
benutzt werden

@ mod 5 6 ; infix durch Hochkommata: 5 ‘mod‘ 6

@ Umgekehrt kénnen infix-Operatoren auch prafix benutzt
werden

@ 5 + 6 ; Prafix durch Einklammern: (+) 5 6

M. Schmidt-SchauB

Vergleichsoperatoren -

@ == fiir den Gleichheitstest
(==) :: (Eq a) => a -> a —> Bool

@ /= fiir den Ungleichheitstest

@ <, <=, >, >=, fiir kleiner, kleiner gleich, groBer
und groBer gleich
(der Typ ist (0rd a) => a -> a -> Bool).

M. Schmidt-SchauB

Assoziativitaten und Prioritaten

infixr 9

infixr 8 ~, 77, *x*

infixl 7 =*, /, ‘quot®, ‘rem‘, ‘div‘, ‘mod‘
infixl 6 +, -

-- The (:) operator is built-in syntax, and cannot
-- legally be given a fixity declaration; but its
-- fixity is given by:

- infixr 5

infix 4 ==, /=, <, <=, >=, >
infixr 3 &&

infixr 2 ||

infixl 1 >>, >>=

infixr 1 =<<

infixr 0 $, $!, ‘seq¢

M. Schmidt-SchauB

Darstellung von Zahlen in KFPTSP+seq o

FRANKFURT AM MAIN.

Mégliche Kodierung von Zahlen in KFPTSP+seq: Peano-Zahlen:

@ Peano-Zahlen sind aus Zero und (Succ Peano-Zahl)
aufgebaut

@ nach dem italienischen Mathematiker Guiseppe Peano
(1858-1932) benannt

data Pint = Zero | Succ Pint
deriving(Eq, Show)
Ubersetzung:

P(0) := Zero
P(n) :=Succ(P(n—1)) firn >0

Z.B. wird 3 dargestellt als Succ(Succ(Succ(Zero))).

Funktionen auf Peano-Zahlen v

istZahl :: Pint -> Bool
istZahl x = case x of
Zero -> True
(Succ y) -> istZahl y

: unendlich :: Pint
: unendlich = Succ unendlich

Addition:
r-—-—--—-—-"-"-""-""-""-""-""-""-""-""-""-""-""-""-"-"-"-"-""=-"-""""=""="="="="="="="="="="="="="=”"="-""”="-""=”"=-"="-"=-"=-=- |
peanoPlus :: Pint -> Pint -> Pint
where

Zero >y

! [

! |

: peanoPlus x y = if istZahl x && istZahl y then plus x y else boF

! |

|

! plus x y = case x of

. :

E Succ z -> Succ (plus z y) |
I

I I

M. Schmidt-SchauB

Funktionen auf Peano-Zahlen (2)

Multiplikation:
peanoMult :: Pint -> Pint -> Pint |
peanoMult x y = if istZahl x && istZahl y then mult x y else boft
where :
mult x y = case x of :
Zero -> Zero !
Succ z -> peanoPlus y (mult z y) E

M. Schmidt-SchauB

Funktionen auf Peano-Zahlen (2) con

Vergleiche:

peanoEq :: Pint -> Pint -> Bool :
peanoEq x y = if istZahl x &% distZahl y then eq x y else bot |
where |
eq Zero Zero = True |
eq (Succ x) (Succ y) =eqxy !
eq _ _ = False :

|

peanoleq :: Pint -> Pint -> Bool :
peanoleq x y = if istZahl x && istZahl y then leq x y else bot;
where |
leq Zero y = True }
leqg x Zero = False |
leq (Succ x) (Succ y) = leq x ¥y !

M. Schmidt-SchauB

Datentypen
GOETHE 35

UNIVERSITAT

Algebraische Datentypen in Haskell

Aufzdhlungstypen — Produkttypen — Parametrisierte Datentypen —
Rekursive Datentypen

M. Schmidt-SchauB

Datentypen

Aufzahlungstypen oERTs

Aufzdhlungstyp = Aufzdhlung verschiedener Werte

|
| data Typname = Konstantel | Konstante2 | | KonstanteN
L o o e e 22 |
Beispiele:
|\ --- - -"-"--"—-"-""=-""=-""=-""=-""=-""=-""=-""="-""=-""=""="""=""=”""=”""=”""“""="="="="=""“"“"“"“"“"“"“*"”7*¥°”7*¥"¥“”7*¥%”*"7”"7*¥"'7”"¥7$TV¥%¥-"7=7"/¥%7=-¥¥%7=/=-¥%7/”"=-" = 1
data Bool = True | False

|
|
|
Montag | Dienstag | Mittwoch | Donnerstag !
Freitag | Samstag | Sonntag !

|

|

Q
o
[a]
a1
<
o
2]
(0]
~
wm
=3
o
=
~ —

deriving(Show) erzeugt Instanz der Typklasse Show, damit der
Datentyp angezeigt werden kann.

M. Schmidt-SchauB

Datentypen

Aufzdhlungstypen (2) -

| istMontag :: Wochentag -> Bool |
| istMontag x = case x of |
: Montag -> True :
[Dienstag -> False \
: Mittwoch -> False l
| Donnerstag -> False |
| Freitag -> False |
| Samstag -> False |
! Sonntag -> False !

In Haskell erlaubt (in KFPTSP+seq nicht):

| 1
|

| istMontag’ :: Wochentag -> Bool
: istMontag’ x = case x of

\ Montag -> True
| y -> False
|

Ubersetzung: Aus istMontag’ wird istMontag

M. Schmidt-SchauB

Datentypen

Aufzahlungstypen (3) :

In Haskell:
Pattern-matching in den linken Seiten der SK-Definition:

: istMontag’’ :: Wochentag -> Bool :
| istMontag’’ Montag = True
: istMontag’’ _ = False

I

Ubersetzung: Erzeuge case-Ausdruck

istMontag’’ xs = case xs of
Montag -> True

I
I
I
I
: -> False

M. Schmidt-SchauB

Datentypen

Produkttypen g

Produkttyp = Zusammenfassung verschiedener Werte in ein
Objekt

Bekanntes Beispiel: Tupel

data Student = Student

l :
! |
: String -- Name !
| String -- Vorname !
E Int -- Matrikelnummer |

M. Schmidt-SchauB

Datentypen

Produkttypen (2) S
o
| setzeName :: Student -> String -> Student
| setzeName x name’ =

(Student name vorname mnr)

|
|
|
|
|
|
case x of |
|
|
|
-> Student name’ vorname mnr

! setzeName :: Student -> String -> Student
| setzeName (Student name vorname mnr) name’ =
| Student name’ vorname mnr |

M. Schmidt-SchauB

Datentypen

Produkttypen und Aufzahlungstypen ol

FRANKFURT AM MAIN.

Man kann beides mischen:

| data DreiDObjekt =

| Wuerfel Int

i | Quader Int Int Int
} | Kugel Int

|

o o — — — — — — — — — o

wobei Konsdef1l ... Konsdefn Konstruktor-Definition mit
Argument-Typen sind (z.B. Produkttypen)

M. Schmidt-SchauB

Datentypen

........

Record-Syntax: Einfiihrung e

data Student = Student

|

|
String -- Vorname i
String -- Name !
Int -- Matrikelnummer

Nachteil
Nur die Kommentare verraten, was die Komponenten darstellen.

AuBerdem miihsam: Zugriffsfunktionen erstellen:

vorname :: Student -> String
vorname (Student vorname name mnr) = vorname

M. Schmidt-SchauB

Datentypen

........

Record-Syntax: Einfiihrung (2) o

Anderung am Datentyp:

|

| |
| |
| String -- Vorname i
1 String -- Name !
i Int -- Matrikelnummer
5 |
! Int -- Hochschulsemester

I vorname :: Student -> String }
|

| vorname (Student vorname name mnr hsem) = vorname }
|

Abhilfe in diesem Aspekt ist die Record-Syntax

M. Schmidt-SchauB

Datentypen

Record-Syntax in Haskell e
Student mit Record-Syntax:
data Student = Student {
vorname :: String,

| |

| |

| |

| 1
o |

| name :: String,

1 matrikelnummer :: Int

|

| |

| |

= Die Komponenten werden mit Namen markiert

M. Schmidt-SchauB

Datentypen

Beispiel -

Beispiel: Student "Hans" "Mueller" 1234567

kann man schreiben als

Reihenfolge der Komponenten egal:

Prelude> let x = Student{matrikelnummer=1234567,
vorname="Hans", name="Mueller"}

M. Schmidt-SchauB

Datentypen

Record-Syntax DR

Zugriffsfunktionen sind automatisch verfiigbar, z.B.

Prelude> matrikelnummer x [ﬂ
1234567

@ Record-Syntax ist in den Pattern erlaubt

@ Nicht alle Felder miissen abgedeckt werden bei Erweiterung
____der_Datenstrukturen. daher kein_Problem________________
i nachnameMitA Student{nachname = ’A’:xs} = True

| nachnameMitA _ = False

M. Schmidt-SchauB

Datentypen

Record-Syntax S

Zugriffsfunktionen sind automatisch verfiigbar, z.B.

Prelude> matrikelnummer x [ﬂ
1234567

@ Record-Syntax ist in den Pattern erlaubt
@ Nicht alle Felder miissen abgedeckt werden bei Erweiterung
____der Datenstrukturen. daher kein Problem________________

i nachnameMitA Student{nachname = ’A’:xs} = True

| nachnameMitA _ = False

Ubersetzung in KFPTSP+seq:
Normale Datentypen verwenden
und Zugriffsfunktionen erzeugen

M. Schmidt-SchauB

Datentypen

Record-Syntax: Update i

|

! setzeName :: Student -> String -> Student
i setzeName student neuername =
|
|
|

student {name = neuername}

matrikelnummer = matrikelnummer student}

I
. setzeName :: Student -> Strlng -> Student
| setzeName student neuername = |
I
! Student {vorname = vorname student,

I
| name = neuername, !
: |
I

M. Schmidt-SchauB

Parametrisierte Datentypen -

Datentypen in Haskell diirfen polymorph parametrisiert sein:

__

Maybe ist polymorph iiber a (der Parameter ist a)

M. Schmidt-SchauB

Datentypen

Parametrisierte Datentypen e

.......

Datentypen in Haskell diirfen polymorph parametrisiert sein:

__

Maybe ist polymorph iiber a (der Parameter ist a)

Beispiel fiir Maybe-Verwendung:

i safeHead :: [a]l -> Maybe a

| safeHead xs = case xs of

! 1 - Nothing
i (y:ys) => Just y

M. Schmidt-SchauB

Datentypen

GOETHE,

Rekursive Datentypen e

........

Rekursive Datentypen:
Der definierte Typ kommt rechts vom = wieder vor

M. Schmidt-SchauB

Datentypen

Haskell: Geschachtelte Pattern Sl

|
| viertesElement (x1:(x2:(x3:(x4:xs)))) = Just x4
| viertesElement _ = Nothing

Ubersetzung in KFPTSP+seq muss geschachtelte case-Ausdriicke
einfiihren:

viertesElement ys = case ys of
[1 -> Nothing
(x1l:ys8’) ->
case ys’ of
[1 -> Nothing
(x2:y8°7) —>
case ys’’ of
[1 -> Nothing
(x3:y8°77) —>
case ys’’’ of
[1 -> Nothing
(x4:x8) -> Just x4

M. Schmidt-SchauB

GOETHE, !g

UNIVERSITAT

Rekursive Datenstrukturen: Listen

Listenfunktionen — Listen als Stréme — List Comprehensions

M. Schmidt-SchauB

Listen von Zahlen -

Haskell: spezielle Syntax

@ [startwert..endwert]
erzeugt: Liste der Zahlen von startwert bis endwert

z.B. ergibt [10..15]die Liste [10,11,12,13,14,15].

M. Schmidt-SchauB

ic|e

Listen von Zahlen

Haskell: spezielle Syntax

@ [startwert..endwert]
erzeugt: Liste der Zahlen von startwert bis endwert

z.B. ergibt [10..15]die Liste [10,11,12,13,14,15].

o [startwert..]
erzeugt: unendliche Liste ab dem startwert

z.B. erzeugt [1..]die Liste aller natiirlichen Zahlen.

M. Schmidt-SchauB

Listen von Zahlen (2)

@ [startwert,naechsterWert..endwert]

erzeugt:

[startwert,startWert+delta,startWert+2delta,...,endwert]
wobei delta=naechsterWert - startWert

Z.B. ergibt: [10,12..20]die Liste [10,12,14,16,18,20].

M. Schmidt-SchauB

Listen von Zahlen (2) o

@ [startwert,naechsterWert..endwert]

erzeugt:

[startwert,startWert+delta,startWert+2delta,...,endwert]
wobei delta=naechsterWert - startWert

Z.B. ergibt: [10,12..20]die Liste [10,12,14,16,18,20].

@ [startWert,naechsterWert..]

erzeugt: die unendlich lange Liste mit der Schrittweite
naechsterWert - startWert.

z.B. [2,4. .]ergibt Liste aller geraden natiirlichen Zahlen

M. Schmidt-SchauB

Listen von Zahlen (3) S

Syntaktischer Zucker: es sind normale Funktionen fiir
den Datentyp List Integer:

from :: Integer -> [Integer]
from start = start:(from (start+1))

fromTo :: Integer -> Integer -> [Integer]
fromTo start end
| start > end =[]

| otherwise = start: (fromTo (start+1) end)

fromThen :: Integer -> Integer -> [Integer]
fromThen start next = start:(fromThen next (2*next - start))

fromThenTo :: Integer -> Integer -> Integer -> [Integer]
fromThenTo start next end

| start > end = []

| otherwise = start:(fromThenTo next (2*next - start) end)

M. Schmidt-SchauB

Guards T

f patl ... patn
| guardl = el
I

| guardn = en

@ Dabei: guardl bis guardn sind Boolesche Ausdriicke, die die
Variablen der Pattern pati,...,patn benutzen diirfen.

@ Auswertung von oben nach unten
@ erster Guard der zu True auswertet bestimmt Wert.

@ otherwise = True ist vordefiniert

M. Schmidt-SchauB

Ubersetzung von Guards in KFPTSP+seq ST

f patl ... patn
| guardl = el
I

| guardn = en
ergibt (if-then-else muss noch iibersetzt werden):

f patl ... patn =
if guardl then el else
if guard2 then e2 else

if guardn then en else s

Wobei s = bot, wenn keine weitere Funktionsdefinition fiir £
kommt, anderenfalls ist s die Ubersetzung anderer
Definitionsgleichungen.

M. Schmidt-SchauB

Beispiel -

P f (x:xs) E
E | x < 10 = True :
: | x > 100 = True |
E f ys = False E

Die korrekte Ubersetzung in KFPTSP+seq (mit if-then else),
unter der Annahme dass es Peano-Zahlen sind, ist:

f = case x of {
Nil -> False;
(x:x8) -> if x < 10 then True else
if x > 100 then True else False

M. Schmidt-SchauB

Zeichen und Zeichenketten -

@ Eingebauter Typ Char fiir Zeichen

@ Darstellung: Einfaches Anfiihrungszeichen, z.B. ’A’
@ Steuersymbole beginnen mit \, z.B. \n, \t
@ Spezialsymbole \\ und \"

M. Schmidt-SchauB

GOETHE,

Zeichen und Zeichenketten e

........

@ Eingebauter Typ Char fiir Zeichen
@ Darstellung: Einfaches Anfiihrungszeichen, z.B. ’A’
@ Steuersymbole beginnen mit \, z.B. \n, \t
@ Spezialsymbole \\ und \"
Strings
e Vom Typ String = [Char]
@ Sind Listen von Zeichen

@ Spezialsyntax "Hallo" ist gleich zu
[;H) s ’a’,’l’ ’)1;,)07] bZW.

H:(Ca’: (017 (1 : (o’ [1)))).

M. Schmidt-SchauB

Zeichen und Zeichenketten (2)

@ Nitzliche Funktionen fiir Char: In der Bibliothek Data.Char

ord :: Char -> Int
chr :: Int -> Char

isLower :: Char -> Bool
isUpper :: Char -> Bool
isAlpha :: Char -> Bool

toUpper :: Char -> Char
toLower :: Char -> Char

M. Schmidt-SchauB

GOETHE, !g

UNIVERSITAT

Standard-Listenfunktionen

Einige vordefinierte Listenfunktionen, fast alle in Data.List

M. Schmidt-SchauB

Standard-Listenfunktionen (1) sorrue G

FRANKFURT AM MAIN.

++, Listen zusammenhangen, (auch append genannt)

|

L (++) 12 [a]l > [a] —> [a] |
s ++ ys = ys |
! (x:x8) ++ ys = x:(xs ++ ys) !

Beispiele:

*> [[1..10] ++ [100..109]
[1,2,3,4,5,6,7,8,9,10,100,101,102,103,104,105,106,107,108,109]
*> [[1,2],[2,3]]1 ++ [[3,4,51] [&]

[[1,2],[2,3],[3,4,5]]

*> "Infor" ++ "matik" [g

"Informatik"

Laufzeitverhalten: linear in der Lange der ersten Liste

M. Schmidt-SchauB

Standard-Listenfunktionen (2) come @

Zugriff auf Listenelement per Index: !!

__

L (1) :: [a] -> Int -> a :
v ['l _ = error "Index too large" 1
| (x:xs) !1 0 =x |
|o(x:xs) 11 i=xs ! (i-1) !
L e e e e e e e e mmmm—]
Beispiele:

*> [1,2,3,4,5]!!3

4

*> [0,1,2,3,4,5]!!3[3

3

*> [0,1,2,3,4,5]!!5[3

5

*> [1,2,3,4,5]!!5

x** Exception: Prelude.(!!): index too large

M. Schmidt-SchauB

. N e MG RS OUUl Listenfunktionen Strme Weitere List Comprehensions
Standard-Listenfunktionen (3) sorrue G

FRANKFURT AM MAIN.

Index eines Elements berechnen: elemIndex

| elemIndex :: (Eq a) => a -> [a] -> Maybe Int |
| elemIndex a xs = findInd 0 a xs |
| where :
| findInd i a [] = Nothing |
| findInd i a (x:xs)

! | a==x = Just i

| | otherwise = findInd (i+1) a xs |

Beispiele:

*> elemIndex 1 [1,2,3]
Just O

*> elemIndex 1 [0,1,2,3]Ez§1
Just 1

*> elemIndex 1 [5,4,3,2][321
Nothing

*> elemIndex 1 [1,4,1,2]
Just O

M. Schmidt-SchauB

Standard-Listenfunktionen (4) sorrue G

FRANKFURT AM MAIN.

Map: Funktion auf Listenelemente anwenden

1 map :: (a -> b) -> [a] -> [b] }

| map f [] =[] |

| map f (x:xs) = (f x):(map f xs) \
|

Beispiele:

*> map (x3) [1..20] [ﬂ
[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60]
*> map not [True,False,False,True] [ﬂ
[False,True,True,False]

*> map ("2) [1..10] [ﬂ

[1,4,9,16,25,36,49,64,81,100]

*> map toUpper "Informatik"

"INFORMATIK"

M. Schmidt-SchauB

Standard-Listenfunktionen (5)

FRANKFURT AM

Filter: Elemente heraus filtern (aus Listen)

filter :: (a -> Bool) -> [a] -> [a]
filter £ [1 = []

filter f (x:xs)

| £ x x:(filter f xs)

| otherwise = filter f xs

Beispiele:

M. Schmidt-SchauB

*> filter (> 15) [10..20]
[16,17,18,19,20]

x> filter isAlpha "2017 Informatik 2017"
"Informatik"

*> filter (\x -> x > 5) [1..10]
[6,7,8,9,10]

Standard-Listenfunktionen (6) sorrue G

FRANKFURT AM MAIN.

Siehe auch Data.List
Analog zu filter: delete: Ein Listenelement iiberall entfernen

| delete x [] =0
| delete x (y:ys) = if x == y then ys else delete x ys
L e e e e e e e e e mmm——]

Mengendifferenz bilden:

*>[1,2,3,4,5,6,7] \\ [5,4,3]
[1’2’6,7]

Der Kompositionsoperator (.) ist definiert als:

Weitere Funktion:

*> nub [1,2,3,4,3,2,1,2,4,3,5]
[1,2,3,4,5]

M. Schmidt-SchauB

Standard-Listenfunktionen (7) gop

Length: Lange einer Liste

__ ‘
| length :: [a] -> Int !
| length [1 = 0 |
| length (_:xs) = 1+(length xs) \

|

Beispiele:

*> length "Informatik"
10

*> length [2..20002]
20001

*> length [1..]

“CInterrupted

M. Schmidt-SchauB

Standard-Listenfunktionen (8)

Length: Bessere Variante (konstanter Platz)

length :: [a] -> Int
length xs = length_it xs O

|
I
]
|
I
length_it [] acc = acc
length_it (_:xs) acc = let acc’ = l+acc :

|

|

in seq acc’ (length_it xs acc’)

M. Schmidt-SchauB

Standard-Listenfunktionen (9)

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

| reversel :: [a] -> [a] |
! reversel [] = [] :
! reversel (x:xs) = (reversel xs) ++ [x] !

M. Schmidt-SchauB

Standard-Listenfunktionen (9)

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

| reversel :: [a] -> [a] |
! reversel [] = [] :
! reversel (x:xs) = (reversel xs) ++ [x] !

rev (x:xs) acc = rev xs (x:acc)

| reverse :: [a] -> [a] |
| reverse Xs = rev xs [1 :
! where rev [] acc = acc !
! |

M. Schmidt-SchauB

Standard-Listenfunktionen (9)

GOETHE, g

UNIVERSITAT
FRANKFURT AM MAIN.

Reverse: Umdrehen einer Liste

Schlechte Variante: Laufzeit quadratisch!

| reversel :: [a]l —> [a]
! reversel [] = []
! reversel (x:xs) = (reversel xs) ++ [x]

| reverse :: [a] -> [a]
| reverse xs = rev xs []
where rev [] acc = acc

|
|
|
| rev (x:xs) acc = rev xs (x:acc)

*> reverse [1..10]
[10,9,8,7,6,5,4,3,2,1

*> reverse "RELIEFPFEILER"
"RELIEFPFEILER"

*> reverse [1..] [g

“C Interrupted

.......

Standard-Listenfunktionen (10) ot

Repeat und Replicate

repeat :: a -> [al
repeat x = x:(repeat x)

replicate :: Int -> a -> [a]
replicate 0 x = []
replicate i x = x:(replicate (i-1) x)

*> repeat 1[%9 i
[1,"ClInterrupted I
*> replicate 10 [1,2] [+
[(f1,21,01,21,01,2],[1,2],(1,2],[1,2],[1,2],[1,2],[1,2],[1,2]]
*> replicate 20 ’A’ [«

"AAAAAAAAAAAAAAAAAAAAY :

M. Schmidt-SchauB

Standard-Listenfunktionen (11) e

Take und Drop: n Elemente nehmen / verwerfen
e
| take :: Int -> [a] —> [al
! take i [] = []

| take 0 xs = []

! take i (x:xs)
|

|

|

|

|

|

|

x: (take (i-1) xs)

drop i [] = [

drop 0 xs = X8

drop i (x:xs) = drop (i-1) xs
L e e e - 1
Beispiele:

*> take 10 [1..]1[&
[1,2,3,4,5,6,7,8,9,10]
*> drop 5 "Informatik"

"matik"
*> take 5 (drop 3 [1..]) [ﬂ
[4,5,6,7,8]

M. Schmidt-SchauB

Standard-Listenfunktionen (12) sorrue G

TakeWhile und DropWhile

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [1 = []
takeWhile p (x:xs)

| px = x:(takeWhile p xs)

| otherwise [1

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [1 = [I
dropWhile p (x:xs)

| px = dropWhile p xs

| otherwise = x:xs

*> takeWhile (> 5) [5,6,7,3,6,7,8] [Q
[1

*> takeWhile (> 5) [7,6,7,3,6,7,8][321
[7,6,7]

*> dropWhile (< 10) [1..20] [<]
[10,11,12,13,14,15,16,17,18, 19 ,20]

M. Schmidt-SchauB

Standard-Listenfunktionen (13) sorrue G

FRANKFURT AM MAIN.

Zip und Unzip
zip :: [a] -> [b] > [(a,b)]
zip [1 ys =[]
zip xs [1 = []
zip (x:xs) (y:ys) = (x,y):(zip xs ys)

unzip :: [(a, b)] -> ([al, [bl)

unzip [1 = ([1,[D)

unzip ((x,y):xs) = let (xs’,ys’) = unzip xs
in (x:xs’,y:ys’)

Beispiele:

*> zip [1..10] "Informatik"
[(1,°1°),(2,’n?),(3,’£?),(4,707),(5,’r?),
(6,’m’),(7,%a’),(8,°t?),(9,’i’),(10,°k?)]

*> unzip [(1,°I%),(2,’n’),(3,’f’),(4,’0°),(5,°r’),
(6,’m’),(7,%a’),(8,’t’),(9,’i’), (10, °k*)]
([1,2,3,4,5,6,7,8,9,10],"Informatik")

M. Schmidt-SchauB

Standard-Listenfunktionen (14)

Bemerkung zu zip:

Man kann zwar zip3, zip4 etc. definieren um 3, 4, ..., Listen in
3-Tupel, 4-Tupel, etc. einzupacken, aber:

Man kann keine Funktion zipN fiir n Listen definieren, wobei n ein
Argument ist.
Grund: diese Funktion ware nicht getypt.

M. Schmidt-SchauB

Standard-Listenfunktionen (15) :

Verallgemeinerung von zip und map:
.
! zipWith :: (a -> b -> ¢) -> [a]l-> [b] -> [c] |
| zipWith f (x:xs8) (y:ys) = (f x y) : (zipWith f xs ys) |
1 zipWith _ _ =0 :
I

vectorAdd :: (Num a) => [a] -> [a] -> [a]
vectorAdd = zipWith (+)

M. Schmidt-SchauB

Standard-Listenfunktionen (16) sorrue G

FRANKFURT AM MAIN.

Die Fold-Funktionen:
@ foldl ® e [ay,...,a,] ergibt (... ((e®a1) ®az)...)®ay,
e foldr ® e [ay,...,a,] ergibt a1 ® (a2 @ (... ® (a, ®e)...))

Implementierung;:
foldl :: (a->b ->a) ->a -> [b] -> a
foldl f e [] = e
foldl f e (x:xs) foldl f (e ‘f¢ x) xs

foldr :: (a => b
foldr f e []
foldr f e (x:xs)

>b) >b ->[a] > b
e
x ‘f¢ (foldr f e xs)

foldl und foldr sind identisch, wenn die Elemente und der Operator
® assoziativ mit neutralem Element e ist.
Fiir endliche Listen, in Bezug auf den berechneten Wert.

M. Schmidt-SchauB

ic|e

Standard-Listenfunktionen (17)

concat :: [[al] -> [a]
concat = foldr (++) []

S
| sum = foldl (+) 0
! product = foldl (*) 1

B e e
! foldl’ :: (a ->b ->a) ->a > [b] > a

! foldl’ f e [] =e

I foldl’ f e (x:xs) = let e’ = e ‘f¢ x in e’ ‘seq‘ foldl’ f e’ xs|
I

M. Schmidt-SchauB

ic|e

Standard-Listenfunktionen (18)

Beachte die Allgemeinheit der Typen von foldl / foldr

foldl :: (a ->b ->a) ->a -> [b] > a

foldr :: (a->b ->b) ->b -> [a] -=> Db

Hh
o
[}
o
=
~
>
M
Y
i
o
|
v
Lol
v
&
&
~
[}
o
o
fal
o
A
2
—
H
=
®

xa und xb haben verschiedene Typen!

Analog mit foldr:

h
o
=
o
H
~
-
»
v
al
o’
1
v
~
o
o
o
»
N
g
&
&
al
o'
o
._]
H
[
[0]

M. Schmidt-SchauB

ic

Standard-Listenfunktionen (19) ;

Varianten von foldl, foldr:

| |
. foldri it (a->a->a) -> [a] > a
i foldrl _ [] = error "foldrl on an empty list" !
: foldrl _ [x] = x |
I
I foldrl f (x:xs) = f x (foldrl f xs) I
I I
I I
| foldll it (@a->a->a) -> [a]l -> a |
| foldll £ (x:xs) = foldl f x xs !
i foldll _ [] = error "foldll on an empty list" !
L e e e e e 1
Beispiele
| o e
maximum :: (Ord a) => [a] -> a

maximum xs = foldll max xs

minimum :: (Ord a) => [a] -> a
minimum xs = foldll min xs

M. Schmidt-SchauB

ic|e

Standard-Listenfunktionen (20)

Scanl, Scanr: Zwischenergebnisse von foldl, foldr
@ scanl ® e [a1,az,....,a,] =[e,e®ay, (e®ar)Ray,...]

@ scanr ® e [a1,a2,....ay] =] ..,0p—1 ® (ay, ®€),a, X e,€]

Es gilt:

@ last (scanl f e xs)

foldl f e xs
foldr f e xs.

@ head (scanr f e xs)

M. Schmidt-SchauB

Standard-Listenfunktionen (21) o
scanl :: (a -> b -> a) -> a -> [b] -> [a] :
scanl f e xs = e:(case xs of

0-> 1

(y:ys) -> scanl £ (e ‘f¢ y) ys)

scanr :: (a -> b ->b) -> b -> [a] -> [b]
scanr _ e [] = [e]
scanr f e (x:xs) = fxq:gs
where qs@(q:_) = scanr f e xs

Anmerkung: “As"’-Pattern Var@Pat

*> scanr (++) [] [[1,2]1,[3,4],(5,6],[7,8]] [Q
[[1,2,3,4,5,6,7,81,[3,4,5,6,7,8],[5,6,7,8],[7,8],[1]
*> scanl (++) [1 [[1,2]1,[3,41,(5,6],[7,8]] [ﬂ

[0, rt,21,r0t,2,3,41,11,2,3,4,5,61,[1,2,3,4,5,6,7,8]]
*> scanl (+) 0 [1..10]
[0,1,3,6,10,15,21,28,36,45,55]

*> scanr (+) 0 [1..10]

M. Schmidt-SchauB

Standard-Listenfunktionen (22)

Beispiele zur Verwendung von scan:

Fakultatsfolge:

*> take b faks [«
[1,1,2,6,24,120

M. Schmidt-SchauB

Standard-Listenfunktionen (22)

Beispiele zur Verwendung von scan:

Fakultatsfolge:

*> take b faks [«
[1,1,2,6,24,120

Funktion, die alle Restlisten einer Liste berechnet:

[[1’2’3]’[2’3]’[3 s]]

*> tails [1,2,3] [« ’

M. Schmidt-SchauB

Standard-Listenfunktionen (22b)

Funktionen, die alle Anfangslisten einer Liste berechnen:

n
:
[}
~
~
o]
N
v
]
+
+
—
<
—
~
—
—
—
=
-
o
o
—

e Fragen dazu: sind die genau gleich?

° welche ist wann besser?

M. Schmidt-SchauB

Standard-Listenfunktionen (23) e

Partitionieren einer Liste

| partition :: (a -> Bool) -> [a] -> ([a], [al)
| partition p [1 = ([1,[1)

| partition p (x:xs)

! | p x = (x:r1,r2)
: | otherwise = (rl,x:r2)

: where (rl,r2) = partition p xs

! quicksort :: (Ord a) => [a] -> [a]

| quicksort [1 = []

I quicksort [x] = [x]

| quicksort (x:xs) = let (kleiner,groesser) = partition (<x) xs
| in quicksort kleiner ++ (x:(quicksort groesser))
|

M. Schmidt-SchauB

Listen als Strome (1)

@ Listen in Haskell kdnnen unendlich lang sein

@ Daher kann man Listen auch als Strome auffassen

@ Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerit)

M. Schmidt-SchauB

Listen als Strome (1) S
@ Listen in Haskell kénnen unendlich lang sein
@ Daher kann man Listen auch als Strome auffassen

@ Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerit)

Bei der Stromverarbeitung muss man beachten:

Nie versuchen die gesamte Liste auszuwerten oder nur einen
Wert fiir den ganzen Strom zu berechnen.

D.h. Funktionen auf Strémen sollten strom-produzierend sein.
Grobe Regel: Funktion £ :: [Int]->[Int] ist
strom-produzierend, wenn take n (f list)

fiir jede unendliche Liste und jedes n terminiert

M. Schmidt-SchauB

Listen als Strome (1) S

@ Listen in Haskell kdnnen unendlich lang sein

@ Daher kann man Listen auch als Strome auffassen

@ Strom entspricht: Daten kommen sequentiell aus einer
Datenquelle (z.B. Messgerit)

@ Bei der Stromverarbeitung muss man beachten:
Nie versuchen die gesamte Liste auszuwerten oder nur einen
Wert fiir den ganzen Strom zu berechnen.

@ D.h. Funktionen auf Strémen sollten strom-produzierend sein.

@ Grobe Regel: Funktion £ ::[Int]->[Int] ist
strom-produzierend, wenn take n (f list)
fiir jede unendliche Liste und jedes n terminiert

@ Ungeeignet daher: reverse, length, foldl,
@ Geeignet: map, filter, zipWith, take, drop

M. Schmidt-SchauB

Listen als Strome (2) coerue B

UNIVERSITAT

Einige Stromfunktionen fiir Strings:
@ words :: String -> [String]
Zerlegen einer Zeichenkette in eine Liste von Wortern

@ lines :: String -> [String]
Zerlegen einer Zeichenkette in eine Liste der Zeilen

@ unlines :: [String] -> String
Einzelne Zeilen in einer Liste zu einem String zusammenfiigen
(mit Zeilenumbriichen)
Beispiele:

*> words "Haskell ist eine funktionale Programmiersprache" |
["Haskell","ist","eine","funktionale“,"Programmiersprache“]_-‘
*> lines "1234\n5678\n90"

["1234","5678","90"]

*> unlines ["1234","5678","90"] "1234\n5678\n90\n"

M. Schmidt-SchauB

Listen als Strome (2) ot

........

Mischen zweier sortierter Strome zu einem sortierten Strom

| merge :: (Ord t) => [t] -> [t] -> [t]
| merge [J ys = ys

| merge xs [1 =zxs

| merge a@(x:xs) be(y:ys)

! | x <=y = x:merge xs b

: | otherwise = y:merge a ys

Beispiel:

*> merge [1,3,5,6,7,9] [2,3,4,5,6] =
[1,2’3’3,4’5’5,6,6’7,9]

M. Schmidt-SchauB

Listen als Strome (3) S

Doppelte Elemente entfernen

nub xs = nub’ xs []
where
nub’ [] _ =0

nub’ (x:xs) seen
| x ‘elem‘ seen = nub’ xs seen
| otherwise = x : nub’ xs (x:seen)

Anmerkungen:
@ seen merkt sich die bereits gesehenen Elemente
@ Laufzeit von nub ist quadratisch
(kann verbessert werden zu O(nlog(n)) z.B. bei Zahlen).

elem e [] = False |
elem e (x:xs)
| e ==x = True |
| otherwise = elem e xs }

M. Schmidt-SchauB

Listen als Strome (4)

Doppelte Elemente aus sortierter Liste entfernen:

nubSorted (x:y:xs)

| x ==y = nubSorted (y:xs)

| otherwise = x:(nubSorted (y:xs))
nubSorted y = y

ist linear in der Lange der Liste.

M. Schmidt-SchauB

Listen als Strome (5)

ic|e

Mischen der Vielfachen von 3,5 und 7:

*> nubSorted $ merge (map (3x) [1..])
*> (merge (map (5%) [1..1) (map (7%) [1..1)) [=]
[(3,5,6,7,9,10,12,14,15,18,20, ..

M. Schmidt-SchauB

Listen als Worterbuch

Lookup
E lookup :: (Eq a) => a -> [(a,b)] -> Maybe b :
i lookup key [] = Nothing \
E lookup key ((x,y):xys) |
| key == x = Just y !
| |
| | otherwise = lookup key xys !
b e e e e 1
Beispiele:

*> lookup 5 [(1,°A’), (2,°B’), (4,°C’), (5,’F)]
Just °F’
*> lookup 3 [(1,’A’), (2,’B’), (4,°C’), (5,’F’)]
Nothing

M. Schmidt-SchauB

Listen als Mengen (1) el

Any und All: Wie Quantoren

i any _ [] = False all _ [] = True :
I any p (x:xs) all p (x:xs) |
Lo (p x) = True | (p %) = all xs |
| | otherwise = any xs | otherwise = False !
! 1
Beispiele:

*> all even [1,2,3,4]

False

x> all even [2,4]

True

x> any even [1,2,3,4]

True

Nur bedingt als Stromfunktionen geeignet.

M. Schmidt-SchauB

ic|e

Listen als Mengen (2)

Delete: Léschen eines Elements

delete :: (Eq a) => a -> [a] -> [al] |

delete e (x:xs8) :
| e ==x = xs :
| otherwise = x:(delete e xs) |

! |
1 A\\) :: (Eq a) => [a] -> [a] -> [a] !
' (\\) = foldl (flip delete) !

M. Schmidt-SchauB

Listen als Mengen (2b)

Beispiele:
x> delete 3 [1,2,3,4,5,3,4,3] [@
[1,2,4,5,3,4,3]
*> [1,2,3,4,41 \\ [9,6,4,4,3,1]
[2]
*> [1,2,3,4] \\ [9,6,4,4,3,1] [&]
[2]

M. Schmidt-SchauB

intersect xs ys = filter (\y -> any (== y) ys) xs

Listen als Mengen (3) S

Vereinigung und Schnitt

|\ - - - - - - -"-"-"-"-"-"-"-"=-"-"=-""-""=-""=-""”-""=-""-"=""="=""="“"~"="~”"“"~"*"”"”*"”>"°¥>°*~*"**"**">"°*"*~*"~*"“~7*"=~”"=-”"=- = hl
| union :: (Eq a) => [a] -> [a] -> [a] :
! union xs ys = xs ++ (ys \\ xs) }
|

| |
| intersect :: (Eq a) => [a] -> [a] -> [a] i
|

| |
| |

*> union [1,2,3,4,4] [9,6,4,3,1] []
[1,2,3,4,4,9,6]

*> union [1,2,3,4,4] [9,6,4,4,3,1] [Q
[1,2,3,4,4,9,6]

*> union [1,2,3,4,4] [9,9,6,4,4,3,1]
[1,2,3,4,4,9,6]

x> intersect [1,2,3,4,4] [4,4]

[4,4]
*> intersect [1,2,3,4] [4,4]
(4l -
*> intersect [1,2,3,4,4] [4]
[4,4]

M. Schmidt-SchauB

GOETHE,

Listen als Mengen (4) o

........

Vereinigung und Schnitt
@ Mengenoperationen sind schneller wenn:

e man eine lineare Ordnung auf den Elementen hat
e und sortierte Listen verarbeitet.

@ Mengenoperationen auf Mengen als Bdume ... (wie DB)

@ Nachschauen in Data.List

M. Schmidt-SchauB

GOE’

ConcatMap o

Konkatiniert die Ergebnislisten: ConcatMap
___ ‘
concatMap :: (a -> [b]) -> [a]l -> [b] |
concatMap f = concat . map f !

*> concatMap (\x-> take x [1..]) [3..7]
[1’2’3’1,2’3’4,1,2’3,4,5’1’2’3,4’5’6,1,2’3,4,5’6’7]

M. Schmidt-SchauB

List Comprehensions g

@ Spezielle Syntax zur Erzeugung und Verarbeitung von Listen

e ZF-Ausdriicke (nach der Zermelo-Frankel Mengenlehre)
Syntax: [Expr | quall,...,qualn]

e Expr: ein Ausdruck
e F'V(Expr) sind durch quall,...,qualn gebunden
e quali ist:

@ ein Generator der Form pat <- Expr, oder

@ ein Guard, d.h. ein Ausdruck booleschen Typs,

@ oder eine Deklaration lokaler Bindungen der Form
let x1=el,...,xn=en (ohne in-Ausdruck!) ist.

M. Schmidt-SchauB

List Comprehensions: Beispiele -

Liste der natiirlichen Zahlen

M. Schmidt-SchauB

ic|e

List Comprehensions: Beispiele

Liste der natiirlichen Zahlen

*> take 10 [(x,y) | x <- [1..]1, y <- [1..]]
[(1,1),1,2),(1,3),(1,4),(1,8),(1,6),(1,7),(1,8),(1,9),(1,10)]

M. Schmidt-SchauB

List Comprehensions: Beispiele e

........

Liste der natiirlichen Zahlen

*> take 10 [(x,y) | x <- [1..]1, y <- [1..]]
[(1,1),1,2),(1,3),(1,4),(1,8),(1,6),(1,7),(1,8),(1,9),(1,10)]

Liste aller ungeraden Zahlen

M. Schmidt-SchauB

List Comprehensions: Beispiele S

Liste der natiirlichen Zahlen

*> take 10 [(x,y) | x <- [1..]1, y <- [1..]]
[1,1,1,2),(1,3),0,4),0,5),(1,6),1,7),(1,8),(1,9),(1,10)]

Liste aller ungeraden Zahlen

M. Schmidt-SchauB

List Comprehensions: Beispiele (2)
Liste aller Paare (Zahl, Quadrat der Zahl)

t1,1,1,2,2,2,3,3,3]

la | (a,_,_,0) <= [&x,x,y,y) | x <= [1..3], y <= [1..3]]] ’

M. Schmidt-SchauB

List Comprehensions: Beispiele (2)
Liste aller Paare (Zahl, Quadrat der Zahl)

[a | (a,_,_,) <= [(x,x,y,y) | x <= [1..3], y <= [1..3]1]]
(1,1,1,2,2,2,3,3,3]

Map, Filter und Concat

M. Schmidt-SchauB

List Comprehensions: Beispiele (2)
Liste aller Paare (Zahl, Quadrat der Zahl)

[a | (a,_,_,) <= [(x,x,y,y) | x <= [1..3], y <= [1..3]1]]
(1,1,1,2,2,2,3,3,3]

Map, Filter und Concat

M. Schmidt-SchauB

List Comprehensions: Beispiele (2)
Liste aller Paare (Zahl, Quadrat der Zahl)

[a | (a,_,_,) <= [(x,x,y,y) | x <= [1..3], y <= [1..3]1]]
(1,1,1,2,2,2,3,3,3]

Map, Filter und Concat

M. Schmidt-SchauB

List Comprehensions: Beispiele (3)

ic|e

Quicksort:

gsort (x:xs) = gsort [y | y <- xs, y <= x]
++ [x]
++ gsort [y | y <- xs, y > x]

Beispiel: Kakuro-Ratsel:
Losung mittels List Comprehensions
Idee Durchmusterung aller Moglichkeiten.
Generatoren und Tests.

M. Schmidt-SchauB

List-Comprehensions Beispiel-Anwendung o

UNIVERSITAT
A

2)(34:2! X"“:

icit. Aus Frankfurter RundschauI NovI 2023'

List-Comprehensions Beispiel-Anwendung o

ad-hoc programmiert: probiert alle Moglichkeiten aus.

Element x-i-j: Zahl in Spalte i, Zeile j

Tests: Ziffern verschieden in einem Zahlblock
Summen stimmen mit Vorgabe iiberein.

import Data.List
sol = [((x16,x17), (x21,x22,x26,x27), (x36,x37,x38) , (x41,x42,x47,x48), (x51,x52,x53) , (x62,x63,x67,x68) ,
(x72,x73)) |
x16 <-[1..8], x17 <- [9-x16], x21 <- [2,3,4,5,8,9],
x22<- [2,3,4,5,8,9]1\\[x21],
x26<-[2,3,4,5,8,91\\ [x21,x22,x16], x27 <- [2,3,4,5,8,9]\\[x21,%22,x26,x17] ,x21+x22+x26+x27 == 19,
x36<-[1,2,3,5,6,7,8,9]\\ [x16,x26], x37<-[1,3,5,6,7,8,9] \\ [x17,x%27,x361,
x38<-[1,2,3,5,6,8,9] \\ [x36,x37], x36+x37+x38 == 11,
x47<-[1,3,4,5] \\ [x17,x27,x37], x48 <- [6-x47] \\ [x38],
x67<-[30-x17-x27-x37-x47-2] \\ [2,4,7,x17,x27,x37,x47], x67 <=9,
x68 <- [1..9] \\ [2,4,7,x38,x48], x68 == 8 - x38-x48,x62<-[1,3,5,6,8,9]1\\[x67,x68],
x63<-[20-x62-x67-x68] ,
x41 <- [2..6]\\[x21], x42 <- [7-x41], x42 /= x22, x51 <- [14-x21-x41] \\ [4,1,x21,x41],
x52 <- [1..9] \\ [x22,7,x42,x51,4],
x53 <- [15-x51-x52] \\ [x51,x52,4], x53 > 0,
x62 <- [1..9] \\ [x22,7,x42,x52,2,4,x67,x68],
x63 <- [20-x62-x67-x68] \\ [x53,x62,7,4,2,x67,68], x63 > 0,
30 == x17+x27+x37+x47+2+x67,
x72 <- [23 - x22-x42-x52-x62] \\ [x22,x42,x52,x63], x72 >0, x72 < 7,
x73 <- [7-x72] \\ [x53,x63],
x53+x63+x73 == 8,
X17+x27+x37+x47+2+x67 == 30

M. Schmidt-SchauB

Ubersetzung von List-Comprehensionen in ZF-freies Haskel

[e | True] =
Lel q] =
Lel b, Q]

[lel p<-1,Q]1

[e | let decls, Q]

Lel
[el g, True]
if bthen [e | Q] else []

letokp=[e |l Q]
ok _ =[]
in concatMap ok 1

let decls in [e | Q]

(wobei Schwarzes 1-1 gemeint ist, und Buntes sind Variablen)

@ ok eine neue Variable,

@ b ein Guard,

@ q ein Generator, eine lokale Bindung
oder ein Guard (nicht True)

@ Q eine Folge von Generatoren, Deklarationen und Guards.

M. Schmidt-SchauB

Ubersetzung in ZF-freies Haskell: Beispiel -

[xy | x <= x5, y <-ys, x > 2, y < 3]

M. Schmidt-SchauB

Ubersetzung in ZF-freies Haskell: Beispiel -

[xy | x <= x5, y <-ys, x > 2, y < 3]

= let ok x = [xxy | y <-ys, x> 2, y < 3]
ok _ =[]
in concatMap ok xs

M. Schmidt-SchauB

Ubersetzung in ZF-freies Haskell: Beispiel

[xy | x <= x5, y <-ys, x > 2, y < 3]

= let ok x = [xxy | y <-ys, x> 2, y < 3]
ok _ = []

in concatMap ok xs

= let ok x = let ok’ y = [x*y | x > 2, y < 3]
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]

in concatMap ok xs

M. Schmidt-SchauB

Ubersetzung in ZF-freies Haskell: Beispiel -

= let ok x = let ok’ y = if x > 2 then [xxy | y < 3] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs

M. Schmidt-SchauB

Ubersetzung in ZF-freies Haskell: Beispiel

let ok x = let ok’ y = if x > 2 then [x*y | y < 3] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3, True] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs

M. Schmidt-SchauB

Ubersetzung in ZF-freies Haskell: Beispiel

let ok x = let ok’ y = if x > 2 then [x*y | y < 3] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs

= let ok x = let ok’ y = if x > 2 then [x*y | y < 3, True] else []
ok’ _ =[]
in concatMap ok’ ys
ok _ =[]
in concatMap ok xs

if x > 2 then
(if y < 3 then [x*y | Truel else [1)

= let ok x = let ok’ y

else []
ok’ _ =[]
in concatMap ok’ ys

ok _ =[]

in concatMap ok xs

M. Schmidt-SchauB

ic

Ubersetzung in ZF-freies Haskell: Beispiel

[x*y | x <- xs, y <~ ys, x > 2, y < 3]

if x > 2 then
(if y < 3 then [x*xy] else [1)

= let ok x = let ok’ y

else []
ok’ _ =[]
in concatMap ok’ ys

ok _ =[]

in concatMap ok xs

Die Ubersetzung funktioniert, aber ist nicht optimal,
da Listen generiert und wieder abgebaut werden;

und bei x <- xs unndtige Pattern-Fallunterscheidung

M. Schmidt-SchauB

Baume
GOETH
T

UN

Rekursive Datenstrukturen:
Baume in Haskell

Binare Baume — N-are Baume — Funktionen auf Baumen —
Syntaxbdume

M. Schmidt-SchauB

Rekursive Datenstrukturen: Baume
Binare Baume mit (polymorphen) Blattmarkierungen:

data BBaum a = Blatt a | Knoten (BBaum a) (BBaum a)
deriving(Eq, Show)

e

BBaum ist Typkonstruktor, Blatt und Knoten sind Datenkonstruktoren

Typ: BBaum Int

M. Schmidt-SchauB

Baume

Rekursive Datenstrukturen: Baume e

Binare Baume mit (polymorphen) Blattmarkierungen:

data BBaum a = Blatt a | Knoten (BBaum a) (BBaum a) |
deriving(Eq, Show) |

BBaum ist Typkonstruktor, Blatt und Knoten sind Datenkonstruktoren

Typ: BBaum Int

beispielBaum =
Knoten
(Knoten
(Knoten
(Knoten (Blatt 1) (Blatt 2))
o T (Knoten (Blatt 3) (Blatt 4))
)
\\7> 7‘//'\\\\‘ (Knoten (Blatt 5) (Blatt 6))

‘////
SN N /N
/\ /N N (Kmoten
2 3 4 8§ 9 10 11 (Blatt 7)
(Knoten
(Knoten (Blatt 8) (Blatt 9))

(Knoten (Blatt 10) (Blatt 11))
M. Schmidt-SchauB

Funktionen auf Baumen (1)

Summe aller Blattmarkierungen

bSum (Blatt a) = a
bSum (Knoten links rechts) = (bSum links) + (bSum rechts)

Ein Beispielaufruf:

*> bSum beispielBaum ’
66

M. Schmidt-SchauB

Baume

Funktionen auf Baumen (1) R

Summe aller Blattmarkierungen

|
} bSum (Blatt a) = a
! bSum (Knoten links rechts) = (bSum links) + (bSum rechts)

Ein Beispielaufruf:

*> bSum beispielBaum
66

Liste der Blitter

i bRand (Blatt a) = [al |
|
|

! bRand (Knoten links rechts) = (bRand links) ++ (bRand rechts)

*> bRand beispielBaum [3
[1,2,3,4,5,6,7,8,9,10,11

M. Schmidt-SchauB

Funktionen auf Baumen (2) S

Map auf Baumen

bMap f (Blatt a) = Blatt (f a) |
bMap f (Knoten links rechts) = Knoten (bMap f links) (bMap f rethts)

Beispiel:

*> bMap ("2) beispielBaum |-|

Knoten (Knoten (Knoten (Knoten (Blatt 1) (Blatt 4))

(Knoten (Blatt 9) (Blatt 16))) (Knoten (Blatt 25) (Blatt 36)))
(Knoten (Blatt 49) (Knoten (Knoten (Blatt 64) (Blatt 81))
(Knoten (Blatt 100) (Blatt 121))))

Die Anzahl der Blatter eines Baumes:

M. Schmidt-SchauB

Funktionen auf Baumen (3) S

Element-Test

bElem e (Blatt a)

|

|

| | e == = True

I | otherwise = False

|

| bElem e (Knoten links rechts) = (bElem e links) || (bElem e recpts)

Einige Beispielaufrufe:

*> 11 ‘bElem‘ beispielBaum [«
True

*> 1 ‘DElem‘ beispielBaum [<]
True

*> 20 ‘bElem‘ beispielBaumm [+]
False

*> 0 ‘DElem‘ beispielBaum m [+]
False

M. Schmidt-SchauB

GOETHE,

Funktionen auf Baumen (4) ot

........

Fold auf Baumen

|
| bFold op (Blatt a) = a

| bFold op (Knoten a b) = op (bFold op a) (bFold op b)

Damit kann man z.B. die Summe und das Produkt berechnen:

*> bFold (+) beispielBaum [+]
66

*> bFold () beispielBaum [+]
39916800

M. Schmidt-SchauB

Funktionen auf Baumen (4b) sorrue G

FRANKFURT AM MAIN.

Allgemeineres Fold auf Bdumen:

|
foldbt :: (a ->b ->b) -> b -> BBauma ->Db |
foldbt op a (Blatt x) =op x a !
foldbt op a (Knoten x y) = (foldbt op (foldbt op a y) x) |
|
|

Der Typ des Ergebnisses kann anders sein als der Typ der
Blattmarkierung
Zum Beispiel: Rand eines Baumes:

*> foldbt (:) [] beispielBaum [«]
(1,2,3,4,5,6,7,8,9,10,11]

M. Schmidt-SchauB

Biume

Haskell Baume Data.Tree _gA

Hackage-Bibliothek zu gelabelten n-dren Baumen

data Tree a =
Node {rootLabel :: a
subForest :: Forest a }
type Forest a = [Tree a]

Data.Tree> let t1 = Node {rootLabel= 1, subForest = []} [ﬂ

Data.Tree> let t2= Node{rootLabel= 2,subForest = [t1]} [<]

Data.Tree> t2 [<—’

Node {rootLabel = 2, subForest = [Node {rootLabel = 1,
subForest = []1}]1}

M. Schmidt-SchauB

N-are Baume

|
| data NBaum a = NBlatt a | NKnoten [NBaum a]
| deriving(Eq, Show)

beispiel = NKnoten [NBlatt 1,
NKnoten [NBlatt 2, NBlatt 3, NBlatt 4],
NKnoten [NKnoten [NBlatt 5], NBlatt 6]]

M. Schmidt-SchauB

ic|e

Baume mit Knotenmarkierungen

Beachte: BBaum und NBaum haben nur Markierungen der Blatter!

Baume mit Markierung aller Knoten

I
data BinBaum a = BinBlatt a | BinKnoten a (BinBaum a)(BinBaum a)

deriving(Eq, Show) !

M. Schmidt-SchauB

Baume mit Knotenmarkierungen

Beachte: BBaum und NBaum haben nur Markierungen der Blatter!

Baume mit Markierung aller Knoten

|
data BinBaum a = BinBlatt a | BinKnoten a (BinBaum a)(BinBaum a)

deriving(Eq, Show) !
L e e e e e e e e e mmm——]
beispielBinBaum =
BinKnoten ’A’
A (BinKnoten ’B’

/ \ (BinKnoten ’D’ (BinBlatt ’H’) (BinBlatt ’I’))
/B\ C (BinKnoten ’E’ (BinBlatt ’J’) (BinBlatt ’K’))
Az//////// \\\x)

D E F G (BinKnoten ’C’
/ \ / \ / \ (BinKnoten ’F’
H I J K L M (BinKnoten ’L’ (BinBlatt °N’) (BinBlatt ’0°))
/\ /' \ (BinKnoten ’M’ (BinBlatt °P’) (BimBlatt ’Q’))
N O P Q)

(BinBlatt ’G’)

M. Schmidt-SchauB

Funktionen auf BinBaum (1)

Knoten in Preorder-Reihenfolge (Wurzel, links, rechts):

|
| preorder :: BinBaum t -> [t]

| preorder (BinBlatt a) = [a]

I preorder (BinKnoten a 1 r) = a:(preorder 1) ++ (preorder r)
I

preorder beispielBinBaum —-——==> "ABDHIEJKCFLNOMPQG"

/N /N PN
L M

Y\ 7\

N o P Q

M. Schmidt-SchauB

Funktionen auf BinBaum (2) ot

........

Knoten in Inorder-Reihenfolge (links, Wurzel, rechts):

inorder :: BinBaum t -> [t] 1
inorder (BinBlatt a) = [a] |
inorder (BinKnoten a 1 r) = (inorder 1) ++ a:(inorder r) |

*> inorder beispielBinBaum [«]
"HDIBJEKANLOFPMQCG"

Y\ Y\ PN
L M

N Y\

N O P Q

M. Schmidt-SchauB

GOETHE,

Funktionen auf BinBaum (3) ot

........

Knoten in Post-Order Reihenfolge (links, rechts, Wurzel)

! postorder (BinBlatt a) = [al
| postorder (BinKnoten a 1 r) = |
[(postorder 1) ++ (postorder r) ++ [al !

*> postorder beispielBinBaum [«]
"HIDJKEBNOLPQMFGCA"

7N\ N PR

L M
AN N\
N O P Q@

Funktionen auf BinBaum (2) sorrue G

FRANKFURT AM MAIN.

Level-Order (Stufenweise, wie Breitensuche)

Schlecht:
levelorderSchlecht b =
concat [nodesAtDepthI i b | i <- [0..depth b]l]

where

nodesAtDepthI O (BinBlatt a) = [a]

nodesAtDepthI i (BinBlatt a) = []

nodesAtDepthI O (BinKnoten a 1 r) = [al

nodesAtDepthI i (BinKnoten a 1 r) = (nodesAtDepthI (i-1) 1)

depth (BinBlatt _) = 0
depth (BinKnoten _ 1 r) = 1+(max (depth 1) (depth r))

|
|
|
|
|
|
|
|
|
|
l
|
++ (nodesAtDepthI (i-1) f)
|
|
|
|
1

*> levelorderSchlecht beispielBinBaum [<]
"ABCDEFGHIJKLMNOPQ"

M. Schmidt-SchauB

Funktionen auf BinBaum (3)

GOETHE,

.......

Level-Order (Stufenweise, wie Breitensuche)

Besser:

| levelorder b = loForest [b]

where

loForest xs = map root xs ++ concatMap (loForest .

root (BinBlatt a) = a

root (BinKnoten a _ _) = a
subtrees (BinBlatt _) = []
subtrees (BinKnoten

*> levelorder beispielBinBaum [«
"ABCDEFGHIJKLMNOPQ"

M. Schmidt-SchauB

Baume mit Knoten und Kantenmarkierungen

data BinBaumMitKM a b =
BiBlatt a
| BiKnoten a (b, BinBaumMitKM a b) (b,BinBaumMitKM a b)
deriving(Eq, Show)

L e o o o o e o e e e e e e e e e e e e e = 1
A beispielBiBaum =
0 1 BiKnoten ’A’

(0,BiKnoten °’B’

(2,BiBlatt ’D’)

B c (3,BiBlatt ’E’))
f/ \3 z;l/ \i) (1,BiKnoten ’C’

(4,BiBlatt ’F’)

D E F G (5,BiBlatt ’G’))

M. Schmidt-SchauB

Funktion auf BinBaumMitKM —‘&Hu

Map mit 2 Funktionen: auf Blatt- und Knoten-Markierung

biMap f g (BiBlatt a) = BiBlatt (f a) |
biMap f g (BiKnoten a (k1l,links) (kr,rechts) = }
BiKnoten (f a) (g k1, biMap f g links) (g kr, biMap f g rechts?

1

Beispiel

*> biMap toLower even beispielBiBaum

BiKnoten ’a’

(True,BiKnoten ’b’ (True,BiBlatt ’d’) (False,BiBlatt ’e’))
(False,BiKnoten ’c’ (True,BiBlatt ’f’) (False,BiBlatt ’g’))

M. Schmidt-SchauB

Anmerkung zum $-Operator -

Definition:

geklammert

M. Schmidt-SchauB

Baume

Syntaxbaume corru: 3

Auch Syntaxbdume sind Baume

Beispiel: Einfache arithmetische Ausdriicke:

E := (E+E)|(ExE)|Z
Z = 07| ... |97
zZ' = e|Z

Als Haskell-Datentyp (infix-Konstruktoren miissen mit : beginnen)

data ArEx = ArEx :+: ArEx data ArEx = Plus ArEx ArEx
| ArEx :*: ArEx alternativ | Mult ArEx ArEx
| Zahl Int |

Zahl Int

ZB. (3+4)*(5+ (64 7)) als Objekt vom Typ ArEx:

((Zahl 3) :+: (Zahl 4)) :*: ((Zahl 5) :+: ((Zahl 6) :+: (Zahl 7)))

M. Schmidt-SchauB

Syntaxbidume (2)

Interpreter als Funktion in Haskell:
__ .
interpretArEx :: ArEx -> Int !
interpretArEx (Zahl i) = i I
interpretArEx (el :+: e2) = (interpretArEx el) + (interpretArEx e2)
interpretArEx (el :*: e2) = (interpretArEx el) * (interpretArEx e2)

M. Schmidt-SchauB

Syntaxbaume: Lambda-Kalkiil -

Syntax des Lambda-Kalkiils als Datentyp:

data LExp v =
Var v -- X
| Lambda v (LExp v) - \v.e
| App (LExp v) (LExp v) -- (el e2)

:: LExp String
= App (Lambda "x" (Var "x")) (Lambda "y" (Var "y"))

M. Schmidt-SchauB

Implementierung der NO-Reduktion o
Versuche eine 3-Reduktion durchzufiihren, dabei frische Variablen

mi.tf[lhrenlu.mllmbenemlen______________________________‘
tryNOBeta :: (Eq b) => LExp b -> [b] -> Maybe (LExp b, [bl)

| tryNOBeta (App (Lambda v e) e2) freshvars |
} let (e’,vars) = substitute freshvars e e2 v :
! I
! I

in Just (e’,vars)

M. Schmidt-SchauB

Implementierung der NO-Reduktion S

Versuche eine 3-Reduktion durchzufiihren, dabei frische Variablen
mitfiihren zum Umbenennen_ _ - ___________________________ ‘
tryNOBeta :: (Eq b) => LExp b -> [b] -> Maybe (LExp b, [bl)

| tryNOBeta (App (Lambda v e) e2) freshvars = |
} let (e’,vars) = substitute freshvars e e2 v :
: in Just (e’,vars)

tryNOBeta (App el e2) freshvars =
case tryNOBeta el freshvars of
Nothing -> Nothing
Just (el’,vars) -> (Just ((App el’ e2), vars))

| tryNOBeta

M. Schmidt-SchauB

vars = Nothing

Implementierung der NO-Reduktion (2)

Implementierung der 2% Reduktion:

reduceNO e = let (e’,v’) = rename e fresh
in tryNO e’ v’
where
fresh = ["x_" ++ show i | i <- [1..]]

tryNO e vars = case tryNOBeta e vars of
Nothing -> e
Just (e’,vars’) -> tryNO e’ vars’

M. Schmidt-SchauB

Implementierung der NO-Reduktion (3) i

Hilfsfunktion: Substitution mit Umbenennung:

substitute freshvars (Var v) expr2 var
| v == var = rename (expr2) freshvars
| otherwise = (Var v,freshvars)

substitute freshvars (App el e2) expr2 var =

let (el’,vars’) = substitute freshvars el expr2 var
(e2’,vars’’) = substitute vars’ e2 expr2 var

in (App el’ e2’, vars’’)

substitute freshvars (Lambda v e) expr2 var =

let (e’,vars’) = substitute freshvars e expr2 var
in (Lambda v e’,vars’)

M. Schmidt-SchauB

Implementierung der NO-Reduktion (4) conmat

Hilfsfunktion: Umbenennung eines Ausdrucks

rename expr freshvars = rename_it expr [] freshvars
where

rename_it (Var v) renamings freshvars =
case lookup v renamings of
Nothing -> (Var v,freshvars)
Just v’ -> (Var v’,freshvars)

rename_it (App el e2) renamings freshvars =
let (el’,vars’) = rename_it el renamings freshvars
(e2’,vars’’) = rename_it e2 renamings vars’
in (App el’ e2’, vars’’)

rename_it (Lambda v e) renamings (f:freshvars) =

let (e’,vars’) = rename_it e ((v,f):renamings) freshvars
in (Lambda f e’,vars’)

M. Schmidt-SchauB

Typdefinitionen in Haskell -

Drei syntaktische Méglichkeiten in Haskell

@ data

@ type
@ newtype

Verwendung von data haben wir bereits ausgiebig gesehen

M. Schmidt-SchauB

Typdefinitionen in Haskell (2)

type; Variante von Typdefinitionen.

Mit type definiert man Typsynonyme, d.h:
Neuer Name fiir bekannten Typ

Beispiele:

type IntCharPaar = (Int,Char)

type Studenten = [Student]

type MyList a = [a]

M. Schmidt-SchauB

Typdefinitionen

Typdefinitionen in Haskell (2) ot

........

type; Variante von Typdefinitionen.
Mit type definiert man Typsynonyme, d.h:
Neuer Name fiir bekannten Typ

Beispiele:

type IntCharPaar = (Int,Char)

|
|
|
type Studenten = [Student] 1
|
|
|
|

i alleStudentenMitA :: Studenten -> Studenten
! alleStudentenMitA = map nachnameMitA

M. Schmidt-SchauB

Typdefinitionen

Typdefinitionen in Haskell (3) come @

FRANKFURT AM MAIN.

Typdefinition mit newtype:
@ newtype ist sehr dhnlich zu type

@ Mit newtype-definierte Typen diirfen eigene Klasseninstanz
fiir Typklassen haben

Mit type-definierte Typen aber nicht.

Mit newtype-definierte Typen haben einen neuen Konstruktor

case und pattern match fiir Objekte vom newtype-definierten
Typ sind immer erfolgreich.

M. Schmidt-SchauB

Typdefinitionen

Typdefinitionen in Haskell (4) come @

FRANKFURT AM MAIN.

Beispiel fiir newtype:

o o — — — — — — — — — o

Ist aber nicht semantisch dquivalent dazu, da
Terminierungsverhalten anders

Vorteil newtype vs. data: Der Compiler weiB, dass es nur ein
Typsynonym ist und kann optimieren:

case-Ausdriicke dazu werden eliminiert und durch direkte Zugriffe
ersetzt.

M. Schmidt-SchauB

	Zahlen
	Algebraische Datentypen
	Listen
	Bäume
	Typdefinitionen

