

Logikbasierte Systeme der Wissensverarbeitung

Allens Zeitintervalllogik

Prof. Dr. M. Schmidt-Schauß

SoSe 2025

Stand der Folien: 24 Juni 2026

Schließen über Zeit

GOETHE UNIVERSITÄT

- Darstellung und Inferenzen für zeitliche Zusammenhänge
- Es gibt verschiedene Zeit-Logiken: z.B. Modallogiken: eher Logik-Aspekte. Temporallogiken.

Diese sprechen über Ereignisse in der Zukunft / Vergangenheit und haben Existenzquantoren. Temporallogiken erlauben teilweise exakte Zeitdauern.

Wir betrachten beispielhaft als einfache Variante die

Allensche Intervall-Logik

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

2/72

Beispiel: Käse-Sahne-Kuchen backen; Aktionen

Zeitliche Zusammenhänge

- Aktionen entsprechen (nicht-leeren) Zeitintervallen
- Ausdrückbar: Aussagenlogische Formeln kombiniert mit Aussagen zur relativen Lage der Intervalle sonst nichts!: keine Zeit-Dauern
- Wie kann man dieses Wissen repräsentieren?
- Und wie daraus Schlüsse ziehen? Welche Inormationen kann man berechnen / erhalten?

www.uni-frankfurt.de

Beispiele

Zutaten

besorger

Teig ruher

lassen

Belag

zubereiten

Teig zub.

Teig ruht

Welche Schlüsse lassen sich daraus ziehen?

• Neue Beziehungen zwischen Aktionen

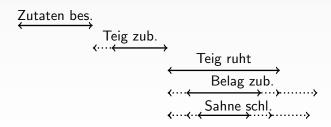
Darf der Belag vor dem Teig in die Form?

• Modell: Anordnung der Intervalle, die alle Beziehungen erfüllt

Wie gelingt der Kuchen?

Konsistenz: Gibt es ein Modell?

Kann man den Kuchen überhaupt backen?



M. Schmidt-Schauß \cdot KI \cdot SoSe 2025 \cdot Allens Zeitlogik

6/72

Sahne schlagen aber vorher endend

> beginnt während

vor

direkt nach

Sahne schl.

Teig zub.

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

5/72

Allensche Intervalllogik

James F. Allen:

Maintaining knowledge about temporal intervals Communications ACM, 1983

Darstellung:

- Benutzung von Zeitintervallen
- ohne Absolutwerte (weder von wann bis wann noch wie lang)
- sondern: nur die relative Lage (vor, nach ...) von Zeit-Intervallen
- Keine Spezifikation von explizit parallelen Aktionen;
- unvollständig spezifizierte relativen Lagen sind erlaubt

Keine Benutzung von Zeitpunkten,

Formeln und Basisrelationen

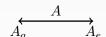
Allensche Formeln:

$$F ::= (A \texttt{ rel } B) \mid \neg F \mid F_1 \vee F_2 \mid F_1 \wedge F_2$$

wobei

- \bullet A, B sind Intervallnamen
- rel ist eine der Allenschen Basisrelationen

Basisrelationen: Gegeben zwei nichtleere reellwertige Intervalle:



- ullet Wie können A und B zueinander liegen?
- Wieviele Möglichkeiten gibt es?

GOROTHIH SE UNINEWSKE SATAT

Allensche Basisrelationen (Notation wie im Original)

Für $[A_a, A_e]$ und $[B_a, B_e]$ und $A_e \leq B_e$. Andere Fälle mit $A_e > B_e$: A, B tauschen.

Bedingung	$Abk\ddot{u}rzung$	Bezeichnung
$A_e < B_a$	\prec	A before B
$A_e = B_a$	m	A meets B
$A_a < B_a < A_e < B_e$	o	${\cal A}$ overlaps ${\cal B}$
$A_a = B_a < A_e < B_e$	s	A starts B
$B_a < A_a < A_e = B_e$	f	${\cal A}$ finishes ${\cal B}$
$B_a < A_a < A_e < B_e$	d	A during B
$B_a = A_a, A_e = B_e$	=	${\cal A}$ equal ${\cal B}$

• und inverse Relationen (ohne \equiv)

(invers: rechts-links vertauscht bzw. Zeitumkehr)

- ullet Inverse: $reve{r}$ ist inverse Relation zu r

Vorsicht leere Intervalle bzw exakte Zeitpunkte gibt es nicht.

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

9/72

Allensche Basisrelationen, Teil 1

$$A \prec B \quad A \text{ before } B \qquad \longleftrightarrow \qquad A \qquad B \qquad B$$

$$A \bowtie B \quad A \text{ meets } B \qquad \longleftrightarrow \qquad A \qquad B \qquad B$$

$$A \circ B \quad A \text{ overlaps } B \qquad \longleftrightarrow \qquad B \qquad B$$

$$A \circ B \quad A \text{ starts } B \qquad \longleftrightarrow \qquad B \qquad B$$

$$A \circ B \quad A \text{ finishes } B \qquad \longleftrightarrow \qquad A \qquad B \qquad B$$

$$A \circ B \quad A \text{ during } B \qquad \longleftrightarrow \qquad A \qquad B \qquad B$$

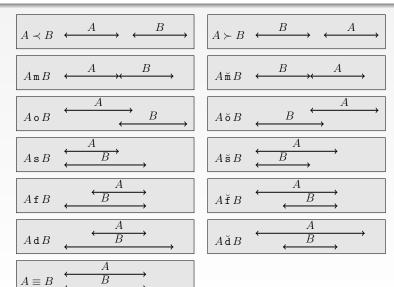
$$A \circ B \quad A \text{ during } B \qquad \longleftrightarrow \qquad A \qquad B \qquad B$$

$$A \circ B \quad A \text{ equal } B \qquad \longleftrightarrow \qquad B \qquad B \qquad B$$

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

10/72

Alle Allensche Basisrelationen



Allensche Basisrelationen

Allensche Basisrelationen

Die 13 Allenschen Basis-Relationen sind:

$$\mathcal{R} := \{ \equiv, \prec, \mathtt{m}, \mathtt{o}, \mathtt{s}, \mathtt{d}, \mathtt{f}, \succ, \check{\mathtt{m}}, \check{\mathtt{o}}, \check{\mathtt{s}}, \check{\mathtt{d}}, \check{\mathtt{f}} \}.$$

Fakt

Die Allenschen Basis-Relationen sind paarweise disjunkt, d.h.

$$A r_1 B \wedge A r_2 B \implies r_1 = r_2.$$

Schreibweise zu Disjunktionen zu A,B

$$A\{r_1, \ldots, r_n\}B := (A \ r_1 \ B) \lor (A \ r_2 \ B) \ldots \lor (A \ r_n \ B)$$

 $A\{r_1,\ldots,r_n\}B$ nennt man **atomares Allen-Constraint**. Dh. $2^{13}=8192$ verschiedene atomare Allen-Constraints zu A,B.

Beispiele

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

13/72

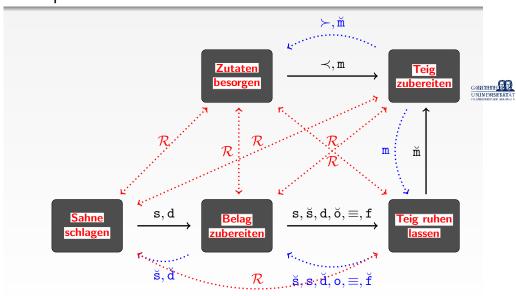
14/72

Allensche Formeln

- Sind aussagenlogische Kombinationen der Basisrelation über Intervallnamen.
 - D.h. Formeln gebildet mittels:
 - Atomen (A R B); R eine der 13 Basisrelationen in R.
 - Verknüpfungen: ∧, ∨, ¬.
- Drücken Bedingungen aus, wie die Aktionen relativ zueinander ablaufen müssen.
- Das ist i.a auch mehrdeutig . . .
- Deswegen braucht man Schlussweisen und Analysen der Logik
- Ergebnisse:
 - Mögliche tatsächliche Lagen der Aktionen
 - oder Widersprüchlickeit: D.h. Anforderungen sind nicht erfüllbar.

• . . .

Beispiel als Constraintnetzwerk



M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

Allensche Formeln: Semantik

Interpretation *I*:

bildet Intervallnamen auf nichtleere Intervalle [a, b] ab, wobei $a, b \in \mathbb{R}$ und a < b.

Interpretation von **atomaren Aussagen** A r B:

Sei $I(A) = [A_a, A_e]$ und $I(B) = [B_a, B_e]$.

- $I(A \prec B) = 1$, gdw. $A_e < B_a$
- I(A m B) = 1, gdw. $A_e = B_a$
- $I(A \circ B) = 1$, gdw. $A_a < B_a$, $B_a < A_e$ und $A_e < B_e$
- $I(A \circ B) = 1$, gdw. $A_a = B_a$ und $A_e < B_e$
- I(A f B) = 1, gdw. $A_a > B_a$ und $A_e = B_e$
- $I(A \triangleleft B) = 1$, gdw. $A_a > B_a$ und $A_e < B_e$
- $I(A \equiv B) = 1$, gdw. $A_a = B_a$ und $A_e = B_e$
- $I(A \ r_0 \ B) = 1$, gdw. $I(B \ r_0 \ A) = 1$
- $I(A \succ B) = 1$, gdw. $I(B \prec A) = 1$

Allensche Formeln: Semantik-Varianten

GOETHE UNIVERSITÄT

Interpretation *I*:

Für die Intervall-Grenzen reicht als Semantik auch:

 \mathbb{Q} oder \mathbb{Z} oder \mathbb{N} . (sind alle gleichwertig)

 \mathbb{R} geht auch, ...

Aber:

Lässt man Intervalle der Länge 0 zu, ergeben sich durch Sonderfälle weniger gute Transitivitätsregeln.

D.h. die Allen-Matrix (s.u.) würde sich ändern:

Z.B. gilt dann nicht mehr:

 $A \text{ m } B \wedge B \text{ m } C \implies A \prec C$

Denn A, B, C könnten Länge 0 haben.

ALSO: Intervalle haben Länge > 0.

17/72

18/72

Modelle und Erfüllbarkeit

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

Interpretation I ist ein **Modell** für F gdw. I(F) = 1 gilt.

Eine Allensche Formel F ist:

- widersprüchlich (inkonsistent), wenn es kein Modell für F gibt.
- allgemeingültig, wenn jede Interpretation ein Modell für F ist.
- erfüllbar, wenn es mindestens ein Modell für F gibt.

Zwei Formeln F und G sind **äquivalent** gdw. $\forall I: I(F) = I(G)$

Semantische Folgerung: $G \models F$ gdw. $\forall I : I(G) = 1 \Rightarrow I(F) = 1$

Allensche Formeln: Semantik (2)

Interpretation von Allenschen Formeln:

D.h.: wie üblich in der Aussagenlogik

$$\begin{array}{lll} I(F \wedge G) = 1 & \text{gdw.} & I(F) = 1 \text{ und } I(G) = 1 \\ I(F \vee G) = 1 & \text{gdw.} & I(F) = 1 \text{ oder } I(G) = 1. \\ I(\neg F) = 1 & \text{gdw.} & I(F) = 0 \\ I(F \iff G) = 1 & \text{gdw.} & I(F) = I(G) \\ I(F \Rightarrow G) = 1 & \text{gdw.} & I(F) = 0 \text{ oder } I(G) = 1 \end{array}$$

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

Disjunktionen von atomaren Formeln

- Zur Erinnerung: $(A \operatorname{Set} B)$ mit $\operatorname{Set} \subseteq \mathcal{R}$ nennen wir atomares Allen-Constraint
- Z.B.: Statt $A \prec B \lor A$ s $B \lor A$ f B schreiben wir $A \{ \prec, \mathtt{s}, \mathtt{f} \} B$
- Beachte: Es gibt 2^{13} solche Mengen S.
- Auch erlaubt: $A \emptyset B$, Semantik: $I(A \emptyset B) = 0$.
- $A \mathcal{R} B$ bedeutet: alles ist möglich, $I(A \mathcal{R} B) = 1$.

Vereinfachungsregeln für Allensche Formeln

- \bullet Ein atomare Aussage der Form $A\ r\ A$ kann man immer vereinfachen zu 0,1 :
 - $A r A \rightarrow 0$, wenn $r \neq \equiv \text{und}$
 - $\bullet \ A \equiv A \rightarrow 1.$

- Negationszeichen kann man nach innen schieben.
- Eine Formel $\neg (A \ R \ B)$ kann man zu $A \ (\mathcal{R} \setminus R) \ B$ umformen.
- Unterformeln der Form A R_1 $B \wedge A$ R_2 B kann man durch A $(R_1 \cap R_2)$ B ersetzen.
- Unterformeln der Form A R_1 $B \vee A$ R_2 B kann man durch A $(R_1 \cup R_2)$ B ersetzen.
- ullet atomare Formeln der Form $A \emptyset B$ kann man durch 0 ersetzen.
- ullet atomare Formeln der Form $A\ \mathcal{R}B$ kann man durch 1 ersetzen.
- Alle aussagenlogischen Umformungen sind erlaubt.

M. Schmidt-Schauß \cdot KI \cdot SoSe 2025 \cdot Allens Zeitlogik

21/72

Allensche Constraints

Mit den Vereinfachungen kann jede Allensche Formel umgeformt werden in ein

Disjunktives Allen-Constraint

• (konjunktives) Allen-Constraint:

Eine Konjunktion von atomaren Allen-Constraints:

$$A_1 S_1 B_1 \wedge \ldots \wedge A_n S_n B_n$$

② Disjunktives Allen-Constraint:

Disjunktion von (konjunktiven) Allen-Constraints

Weniger geht nicht: Z.B. nicht vereinfachbar: $A \leq B \vee C \leq D$

Vereinfachungen (2)

Theorem

Jede Vereinfachungsregel für Allensche Formeln erhält die Äquivalenz, d.h. wenn $F \to F'$, dann sind F und F' äquivalente Formeln.

Beweis: Verwende die Semantik

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

22/72

Allensche Formeln: Anmerkungen zur Vereinfachung

Gelernt in der Aussagenlogik:

- f O Sei F aussagenlogische Formel mit Allen-Basis-Formeln als atomare Aussagen.
- Dann ist die Umformung in ein konjunktives Allen Constraint
 - worst case exponentiell. Aber Resultat äquivalent.
 - Polynomiell mit Tseitin-Transformation (schnelle CNF-Erzeugung);

aber nur unter Erhaltung der Widersprüchlichkeit; (Äquivalenz bleibt nicht erhalten.)

22/12

Allenscher Kalkül

- Eingabe: Allen-Constraint
- Ausgabe: Weitere Beziehungen die daraus folgen, bzw. 0 (Widerspruch).
- Wir beschränken uns auf: Konjunktive Allen-Constraints
- Bei disjunktiven Allen-Constraints: bearbeite die konjunktiven Allen-Constraints unabhängig und füge dann zusammen.

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

25/72

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

26/72

Allenscher Kalkül (3)

Wie folgert man genau?

- Basisrelationen r_1, r_2 : $A r_1 B \wedge B r_2 C$. Man braucht die Komposition $(r_1 \circ r_2)$, als kleinste Menge mit: $A r_1 B \wedge B r_2 C \models A(r_1 \circ r_2)C$. Beachte: $(r_1 \circ r_2)$ ist nicht unbedingt eine Basisrelation
- $R_1, R_2 \subseteq \mathcal{R}$: $A R_1 B \wedge B R_2 C$. Komposition der Mengen: Sei $R_1 \circ R_2$ gerade die (kleinste) Menge mit: $AR_1B \wedge BR_2C \models A(R_1 \circ R_2)C$.

Allenscher Kalkül (2)

Wesentliche Regel: "Transitivitätsregel"

- Aus $A \prec B \land B \prec C$ kann man $A \prec C$ folgern.
- Aus $A \prec B \land C \prec B$ kann man nichts Neues über die Beziehung zwischen A und C folgern (alles ist möglich)

Kompositionsmatrix

	~	>	d	ď	0	ŏ	m	m	s	š	f	ť
~	~	R	≺om ds	~	~	≺om ds	~	≺om ds	~	~	≺om ds	~
≻	\mathcal{R}	_	≻ŏm df	$^{\prime}$	≻ŏm df	_	≻ŏm df	>	≻ŏm df	>	_	_
d	~	_	d	\mathcal{R}	≺om ds	≻ŏm df	~	>	d	≻ŏm df	d	≺om ds
ď	≺om ďť	≻ŏm ďš	$\mathcal{R}\setminus \prec \succ$ m m	ď	οďf	ŏďš	οďť	ŏďš	οďf	ď	ŏďš	ď
0	~	≻ŏm ďš	o d s	≺om ăř	≺ o m	R \	Υ	ŏďš	0	ďťo	dso	≺ o m
ŏ	≺om ď f	7	ŏdf	≻ŏm ďš	R \	≻ŏmĭ	οďf	_	ŏdf	≻ŏmĭ	ŏ	ŏďš
m	~	≻ŏm ďš	o d s	Υ	Υ	o d s	Υ	≡ f ř	m	m	dso	~
m	≺om ďť	7	ŏdf	Υ	ŏdf	$^{\prime}$	≡вĕ	>	dfŏ	_	m	m
s	~	_	d	≺om ďř	≺ o m	ŏdf	~	m	s	≡ в ĕ	d	≺ o m
š	≺om ďť	_	ŏdf	ď	οďf	ŏ	οďf	m	≡вў	š	ŏ	ď
f	~	>	d	≻ŏm ăă	o d s	≻ŏmĭ	m	>	d	≻ŏй	f	≡ f ř
ř	~	≻ŏm ďš	o d s	ď	0	ŏďš	m	ŏďš	0	ď	≡f ť	ř

 12×12 -Matrix reicht, da: $(r \circ \equiv) = r = (\equiv \circ r)$

Kompositionsmatrix

Die Einträge kann man per Hand ausrechnen.

Oder einmalige automatische Berechnung.

Beispiel: $\prec \circ d$

Betrachte alle möglichen Lagen für $A \prec B \land B$ d C

Möglichkeiten: $A \{ \prec, o, m, s, d \} C$.

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

29/72

30/72

Inverse für Mengen

Inversion für Mengen von Basisrelationen

Sei
$$S = \{r_1, \dots, r_k\} \subseteq \mathcal{R}$$
 und $\check{S} = \{\check{r_1}, \dots, \check{r_k}\}.$

Beachte. Es gilt: $\breve{r} = r$

Damit gilt:

Lemma

Für $S \subseteq \mathcal{R}$ gilt: A S B und $B \check{S} A$ sind äquivalente Allensche Formeln.

Lemma

$$\breve{\cdot}(r_1 \circ r_2) = \breve{r_2} \circ \breve{r_1}$$

$$(\overbrace{r_1 \circ r_2)} = \breve{r_2} \circ \breve{r_1}$$

Komposition der Mengen

Beispiel: Aus $A \{m,d\}$ $B \wedge B \{f,d\}$ C kann man schließen

$$A (m \circ f \cup m \circ d \cup d \circ f \cup d \circ d) C$$

$$= A \{d, s, o\} \cup \{d, s, o\} \cup \{d\} \cup \{d\} C$$

$$= A \{d, s, o\} C$$

Allgemein gilt:

Lemma

Seien $r_1, \ldots, r_k, r'_1, \ldots, r'_k$ Allensche Basisrelationen. Dann gilt

$$\{r_1,\ldots,r_k\}\circ\{r'_1,\ldots,r'_k\}=\bigcup\{r_i\circ r'_j\mid i=1,\ldots,k,j=1,\ldots,k'\}$$

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

Allenscher Abschluss für Konjunktive Allen-Constraints

Eingabe: Konjunktives Allen-Constraint

Ausgabe: Allenscher Abschluss

Verfahren: Berechne Fixpunkt bezüglich der Regeln (auf Subformeln):

Vereinfachungen: (→ bedeutet "ersetze")

R ist Relation (Menge bzw Disjunktion von einfachen Relationen)

- $A R_1 B \wedge A R_2 B \rightarrow A (R_1 \cap R_2) B$
- ullet $A \ \emptyset \ B
 ightarrow { t False}$
- $A \mathcal{R} B \rightarrow 1$
- $A R A \rightarrow 0$, wenn $\equiv \not \in R$.
- $A R A \rightarrow 1$, wenn $\equiv \in R$.
- Folgerungen: (→ bedeutet "füge hinzu")
 - $A R B \rightsquigarrow B \breve{R} A$, wobei $\breve{R} := \{\breve{r_1}, \dots, \breve{r_n}\}$ für $R = \{r_1, \dots, r_n\}$
 - $A R_1 B \wedge B R_2 C \rightsquigarrow A (R_1 \circ R_2) C$.
- und übliche aussagenlogische Umformungen

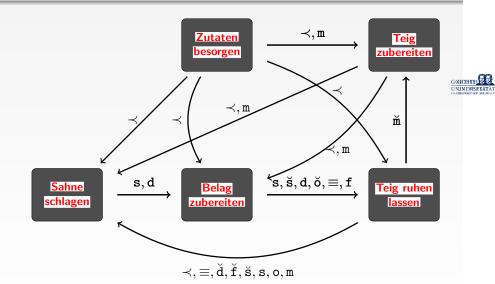
Allenscher Abschluss für alle Allen-Constraints

- Für konjunktive Allensche Constraints: Wende die Regeln des Allenschen Kalküls solange an, bis sich keine neuen Beziehungen mehr herleiten lassen (Fixpunkt)
- Disjunktive Constraints (Disjunktion von konjunktiven Allensche Constraints): Wende Fixpunktiteration auf jede Komponente an, und vereinfache anschließend
 - Komponente = 1: Disjunktiver Constraint ist äquivalent zu 1
 - Komponente = 0: Kann gestrichen werden
 - Alle Komponenten = 0: Disjunktiver Constraint widersprüchlich (Inkonsistenz)

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

33/72

GOETHE



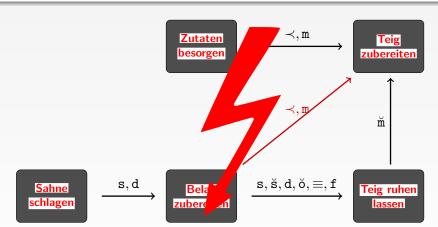
M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

Beispiel (ein konjunktiver Constraint)

34/72

36/72

Beispiel (2)



Beispiel-Addition schlägt fehl, da der Schnitt an der roten Kante mit dem gleich beschrifteten aber inversen Pfeil eine leere Kantenbeschriftung erzeugen würde.

Korrektheit, Vollständigkeit

Wir sagen, der Allen-Kalkül ist

- korrekt, wenn bei $F \to F'$ stets gilt: F und F' sind äquivalente Formeln
- herleitungs-vollständig, wenn er für jedes konjunktive Constraint alle semantisch folgerbaren Einzel-Relationen herleiten kann.
- widerspruchs-vollständig, wenn er für jedes unerfüllbare konjunktive Constraint herausfinden kann, dass es widersprüchlich ist (Herleitung der 0)

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik 35/72 M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

 Wie aufwändig ist die Berechnung des Abschlusses der Allenschen Relationen?

- Ist der Allen-Kalkül korrekt?
- Ist die Berechnung herleitungs- bzw- widerspruchs-vollständig?
- Was ist die Komplexität der Logik und der Herleitungsbeziehung, evtl. für eingeschränkte Eingabeformeln?
- Wie kann man den Allenschen Kalkül für aussagenlogische Kombinationen von Intervallformeln verwenden?
- Was kann man über andere Zeitkalküle sagen?

PDF zur Evaluation

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

37/72

M. Schmidt-Schauß \cdot KI \cdot SoSe 2025 \cdot Allens Zeitlogik

38/72

Implementierung der Allen-Vervollständigung

- Wesentliche Regel: Transitivitätsregel $A \ R_1 \ B \wedge B \ R_2 \ C \rightarrow A \ R_1 \circ R_2 \ C$.
- Konjunktive Allen-Constraints haben die Form (schon zusammengefasst)

$$\bigwedge_{i,j \in \{1,\dots,n\}} A_i R_{i,j} A_j$$

Nicht vorhandene Relationen werden auf \mathcal{R} gesetzt.

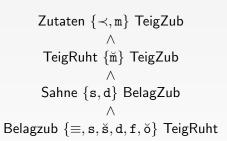
- Abschluss kann mit einer $n \times n$ -Tabelle gemacht werden
- Sobald ∅ irgendwo auftaucht, kann man abbrechen
- Ähnlich zum Warshall-Algorithmus (für transitive Hülle)
- Bei disjunktiven Allen-Constraints: bearbeite die Allen-Constraints separat und fasse dann zusammen.

Beispiel für das Eingabearray

 $\begin{array}{c} {\sf Zutaten}\ \{ {\prec}, {\tt m} \}\ {\sf TeigZub} \\ & \land \\ {\sf TeigRuht}\ \{ {\tt \check{m}} \}\ {\sf TeigZub} \\ & \land \\ {\sf Sahne}\ \{ {\tt s}, {\tt d} \}\ {\sf BelagZub} \\ & \land \\ {\sf BelagZub}\ \{ \equiv, {\tt s}, {\breve{\tt s}}, {\tt d}, {\tt f}, {\breve{\tt o}} \}\ {\sf TeigRuht} \end{array}$

$R_{i,j}$	(1) Zutaten	(2) TeigZub	(3) TeigRuht	(4) Sahne	(5) Belagzub
(1) Zutaten	{≡}	$\{\prec,\mathtt{m}\}$	$\mathcal R$	\mathcal{R}	\mathcal{R}
(2) TeigZub	{≻, mັ}	{≡}	{m}	\mathcal{R}	\mathcal{R}
(3) TeigRuht	\mathcal{R}	{mັ}	{≡}	\mathcal{R}	$\left \left\{\equiv,reve{\mathtt{d}},reve{\mathtt{f}},\mathtt{s},reve{\mathtt{s}},\mathtt{o} ight\} ight $
(4) Sahne	\mathcal{R}	\mathcal{R}	\mathcal{R}	{≡}	$\{d,s\}$
(5) Belagzub	\mathcal{R}	\mathcal{R}	$\{\equiv,\mathtt{s},\breve{\mathtt{s}},\mathtt{d},\mathtt{f},\breve{\mathtt{o}}\}$	$\{\check{\mathtt{d}}, \check{\mathtt{s}}\}$	{≡}

Beispiel für die Vervollständigung



Vervollständigung:

$R_{i,j}$	Zutaten	Teigzub	TeigRuht	Sahne	Belagzub
(1) Zutaten	{≡}	$\{\prec,\mathtt{m}\}$	~	~	~
(2) TeigZub	$\{\succ, \breve{\mathtt{m}}\}$	{≡}	{m}	$\{\succ, m\}$	$\{\succ, m\}$
(3) TeigRuht	>	{mັ}	{≡}	$\{\succ, \equiv, \check{\mathtt{d}}, \check{\mathtt{f}}, \check{\mathtt{s}}, \mathtt{m}, \mathtt{o}, \mathtt{s}\}$	$\{\equiv, \breve{\mathtt{d}}, \breve{\mathtt{f}}, \breve{\mathtt{s}}, \mathtt{o}, \mathtt{s}\}$
(4) Sahne	>	$\{\succ, \breve{\mathtt{m}}\}$	$\{\equiv,\succ,\breve{\mathtt{m}},\breve{\mathtt{o}},\breve{\mathtt{s}},\mathtt{d},\mathtt{f},\mathtt{s}\}$	{≡}	$\{d,s\}$
(5) BelagZub	>	$\{\succ, \breve{\mathtt{m}}\}$	$\{\equiv, \breve{\mathtt{o}}, \breve{\mathtt{s}}, \mathtt{d}, \mathtt{f}, \mathtt{s}\}$	$\{reve{\mathtt{d}},reve{\mathtt{s}}\}$	{≡}

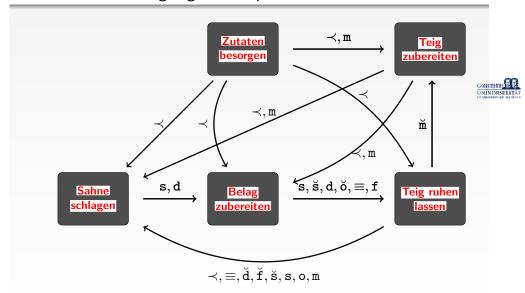
M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

41/72

Algorithmus 1

```
Algorithmus Allenscher Abschluss, Variante 1
Eingabe: (n \times n)-Array R, mit Einträgen R_{i,j} \subseteq \mathcal{R}
Algorithmus:
repeat
   change := False;
   \quad \mathbf{for} \ i := 1 \ \mathbf{to} \ n \ \mathsf{do}
      for i := 1 to n do
         \quad \text{for } k := 1 \text{ to } n \text{ do}
            R' := R_{i,j} \cap (R_{i,k} \circ R_{k,j});
            if R_{i,j} \neq R' then
               R_{i,j} := R';
               change := True;
            endif
         endfor
      endfor
   endfor
until change=False
```

Die Vervollständigung als Graphik:



M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

42/72

Erläuterung

$$\begin{split} R' &:= R_{i,j} \cap (R_{i,k} \circ R_{k,j}) \\ \text{entspricht gerade} \\ & \qquad \qquad A_i \ R_{i,k} \ A_k \wedge A_k \ R_{k,j} \ A_j \ \wedge \ A_i \ R_{i,j} \ A_j \\ & \rightarrow \quad A_i \ R_{i,k} \ A_k \wedge A_k \ R_{k,j} \ A_j \wedge A_i \ R_{i,k} \circ R_{k,j} \ A_j \wedge A_i \ R_{i,j} \ A_j \\ & \rightarrow \quad A_i \ R_{i,k} \ A_k \wedge A_k \ R_{k,j} \ A_j \wedge A_i \ (R_{i,k} \circ R_{k,j}) \cap R_{i,j} \ A_j \end{split}$$

Eigenschaften Algorithmus 1

• Ähnlich zu Warshall-Algorithmus, aber iteriert (notwendig!)

• solange bis Fixpunkt erreicht ist

Korrekt: Offensichtlich

Laufzeit: Im worst-case $O(n^5)$

GORTHIHLE TO UNINEWSREATÄT FRANKSPUREURR MAIRAIN

Begründung:

• 3 geschachtelte for-Schleifen: $O(n^3)$

ullet repeat-Schleife: Im schlechtesten Fall wird nur ein $R_{i,j}$ um eins verkleinert

ullet pro $R_{i,j}$ maximal 13 Verkleinerungen

ullet Es gibt n^2 Mengen $R_{i,j}$

ullet Daher: repeat-Schleife wird maximal $O(n^2)$ mal durchlaufen

ullet ergibt: $O(n^5)$

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

45/72

Eigenschaften Algorithmus 2

Korrektheit: Bei Änderung von $R_{i,j}$ werden alle Nachbarn, die evtl. neu berechnet werden müssen, in eine queue eingefügt

Laufzeit:

• Am Anfang: queue enthält n^3 Tripel

• while-Schleife entfernt pro Durchlauf ein Element aus queue

• Einfügen in queue in der Summe:

• $R_{i,j}$ kann höchstens 13 mal verändert werden.

ullet D.h. höchstens n^2*13 mal wird eingefügt

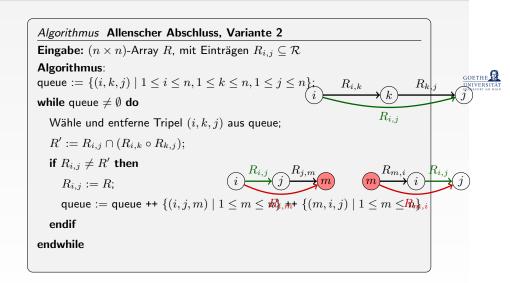
 $\bullet \ \, {\sf Einmal \ einf "ugen"}: \ \, 2*n \ \, {\sf Tripel \ werden \ hinzugef "ugt"}$

Insgesamt: Es werden höchstens $13*2*n*n^2$ Tripel zu queue hinzugefügt

• Ergibt $O(n^3)$ Durchläufe der while-Schleife (von denen maximal $O(n^2)$ Durchläufe O(n) Laufzeit verbrauchen und die restlichen O(n) in konstanter Laufzeit laufen)

Algorithmus 2 hat worst-case-Laufzeit $O(n^3)$

Algorithmus 2



M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

46/72

Allenscher Kalkül: Korrektheit

Korrektheit

Der Allensche Kalkül ist korrekt, d.h. wenn $F \to F'$, dann sind F und F' äquivalente Formeln

Beweis (Skizze): Verwende die Semantik

- Aussagenlogische Umformungen: klar

- $A\ R_1\ B \wedge A\ R_2\ B$ ist äquivalent zu $A\ (R_1\cap R_2)\ B$:

Sei $R_1 = \{r_1, \dots, r_k\}$, $R_2 = \{r'_1, \dots, r'_{k'}\}$.

 $A R_1 B \wedge A R_2 B$

 $= (\bigvee Ar_i B) \wedge (\bigvee A r'_{i'} B)$

 $\vee \ \bigvee \{(A \ r_i \ B) \land (A \ r'_{i'} \ B) \mid 1 \leq i \leq k, 1 \leq i' \leq k'\}$ (ausmultiplizieren)

 $\sim \quad \bigvee \{(A \; r_i \; B) \land (A \; r'_{i'} \; B) \; | \; 1 \leq i \leq k, 1 \leq i' \leq k', r_i = r'_{i'}\} \; \text{(Basisrelationen disjunkt)}$

 $= A (R_1 \cap R_2) B$

- $A \emptyset B \sim 0$ und $A \mathcal{R} B \sim 1$ (klar)

Allenscher Kalkül: Korrektheit (2)

Beweis (Fortsetzung)

- A R A ist äquivalent zu 0, wenn $\equiv \notin R$ und A R A ist äquivalent zu 1, wenn $\equiv \in R$:

Jede Interpretation bildet I(A) eindeutig auf ein Intervall ab.

-Transitivitätsregel:

Basisrelationen: Man muss die Korrektheit der Matrix prüfen. Für mehrelementige Mengen:

$$A \{r_1, \ldots, r_k\} B \wedge B \{r'_1, \ldots, r'_{k'}\} C$$

- = $(A \ r_1 \ B \lor ... \lor A \ r_k \ B) \land (B \ r'_1 \ C \lor ... \lor B \ r'_{k'} \ C)$ (ausmultiplizieren)
- $\sim \bigvee \{(A \ r_i \ B \land B \ r'_{i'} \ C) \mid 1 \le i \le k, 1 \le i' \le k'\}$ (Basis)
- $\sim \bigvee \{ (A \ r_i \ B \land B \ r'_{i'} \ C \land A \ r_i \circ r'_{i'} \ C) \mid 1 \le i \le k, 1 \le i' \le k' \}$
- $\sim A \{r_1, \dots, r_k\} B \wedge B \{r'_1, \dots, r'_{k'}\} C \wedge \bigvee \{(A r_i \circ r'_{i'} C) \mid 1 \le i \le k, 1 \le i' \le k'\}$
- $= A \{r_1, \dots, r_k\} B \wedge B \{r'_1, \dots, r'_{k'}\} C \wedge A \{r_1, \dots, r_k\} \circ \{r'_1, \dots, r'_{k'}\} C$

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

49/72

Unvollständigkeit des Allen-Kalküls

Leider gilt:

Theorem

Der Allensche Kalkül ist nicht herleitungs-vollständig.

Beweis: Gegenbeispiel: Für den Allenschen Constraint:

$$D~\{\mathrm{o}\}~B \wedge D~\{\mathrm{s},\mathrm{m}\}~C \wedge D~\{\mathrm{s},\mathrm{m}\}~A \wedge A~\{\mathrm{d},\check{\mathrm{d}}\}~B \wedge C~\{\mathrm{d},\check{\mathrm{d}}\}~B$$

ist der Allensche Abschluss:

$$D \ \{ \mathbf{o} \} \ B \wedge D \ \{ \mathbf{s}, \mathbf{m} \} \ C \wedge D \ \{ \mathbf{s}, \mathbf{m} \} \ A \wedge A \ \{ \mathbf{d}, \check{\mathbf{d}} \} \ B \wedge C \ \{ \mathbf{d}, \check{\mathbf{d}} \} \ B \\ \wedge C \ \{ \mathbf{s}, \check{\mathbf{s}}, \equiv, \mathbf{o}, \check{\mathbf{o}}, \check{\mathbf{d}}, \check{\mathbf{d}}, \check{\mathbf{f}}, \check{\mathbf{f}} \} \ A$$

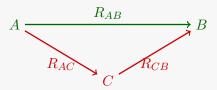
Aber C $\{f, \check{f}, o, \check{o}\}$ A ist nicht möglich (nächste Folie) D.h. das Allen-Verfahren erkennt diese Unmöglichkeit nicht

Partielle Vollständigkeit

Der Allensche Kalkül ist vollständig in eingeschränktem Sinn:

Satz (Pfadkonsistenz)

Der Allensche Abschluss ist 3-konsistent:



D.h.: Jede Belegung I der Intervalle A und B mit $I(A R_{AB} B) = \text{True}$ kann auf das Intervall C erweitert werden, so dass $I(A R_{AC} C) = \text{True} = I(C R_{CB} B)$.

Es gilt nicht (globale Konsistenz):

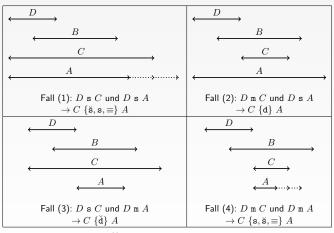
Jede Belegung von k Knoten kann auf k+1 Knoten unter Erhaltung der Erfüllbarkeit erweitert werden

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

50/72

Beweis (Fortsetzung)

- ullet Die Lage von B zu D ist eindeutig.
- Möglichkeiten D zu A und D zu C: 4 Fälle $\{s, m\} \times \{s, m\}$



 $C \{f, \check{f}, o, \check{o}\}$ A nicht möglich!

Unvollständigkeit des Allen-Kalküls (2)

Konsequenzen der Unvollständigkeit

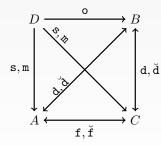
СОЮНИН

Ebenso gilt:

Theorem

Der Allensche Kalkül ist nicht widerlegungsvollständig.

Beweis: Gegenbeispiel: Leichte Abwandlung des Beispiels davor Füge $A\{f, \check{f}\}$ C hinzu, d.h. man erhält das Constraintnetzwerk:



Allenscher Abschluss: Verändert das Netzwerk nicht, aber es ist widersprüchlich!

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

53/72

Satz (Valdés-Pérez, 1987)

Eindeutige Allen-Constraints (2)

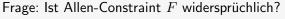
Ein eindeutiges Allensches Constraint ist erfüllbar, gdw. der Allensche Kalkül bei Vervollständigung das Constraint nicht verändert, d.h. wenn es ein Fixpunkt ist.

Beweisidee: Zeige, wenn Allen-Kalkül keinen Widerspruch entdeckt, dann ist Constraint erfüllbar.

Es gibt dann eine totale Ordnung der Intervallenden

Korollar

Auf eindeutigen Allen-Constraints ist der Allen-Kalkül korrekt und vollständig



- Abschluss = 0, dann JA
- Abschluss = 1, dann NEIN
- Abschluss weder 0 noch 1: man weiß nichts

Frage: Ist Allen-Constraint F erfüllbar?

- Abschluss = 0. dann NEIN
- Abschluss = 1, dann JA (Tautologie)
- Abschluss weder 0 noch 1: man weiß nichts

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

54/72

Eindeutige Allen-Constraints

Definition

Ein Allensches Constraint nennt man eindeutig, wenn für alle Paare A,B von Intervallkonstanten gilt: Das Constraint enthält genau eine Beziehung A r B, wobei r eine der dreizehn Basisrelationen ist.

Es gilt:

Satz

Der Allensche Abschluss eines eindeutigen Allenschen Constraints F ist entweder 0, oder wiederum F.

Beweis: Jede Transitivitätsregelanwendung leitet \emptyset her, oder lässt Eintrag unverändert.

Eindeutige Allen-Constraints: Menge

Zu jedem Allenschen Constraint C kann man die Menge aller zugehörigen eindeutigen Allenschen Constraints D definieren, wobei gelten muss:

Wenn A r B in D vorkommt und A R B in C, dann gilt $r \in R$.

Lemma

Ein Allen-Constraint ist erfüllbar, gdw. es ein zugehöriges eindeutiges Constraint gibt, das erfüllbar ist.

Beweis: Klar

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

57/72

Komplexität des Problems

Satz

Das Erfüllbarkeitsproblem für konjunktive Allenschen Constraints ist \mathcal{NP} -vollständig.

Beweis:

Problem ist in \mathcal{NP} :

- Rate lineare Reihenfolge der Intervallanfänge und -enden
- D.h. Ordnung auf allen X_a, X_e für alle Intervalle X
- Verifiziere ob Reihenfolge das Constraint erfüllt
- Verifikation geht in Polynomialzeit

Vollständiges Verfahren

Der Algorithmus ist korrekt und vollständig. Die Laufzeit ist im worst-case exponentiell. Mittlere Verzweigungsrate: 6,5

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

58/72

Beweis (Fortsetzung)

\mathcal{NP} -Härte:

Reduktion von 3-Färbbarkeit auf Erfüllbarkeit von Allen-Constraints

3-Färbbarkeit:

Kann man die Knoten eines ungerichteten Graphen mit drei Farben färben, so dass benachbarte Knoten stets verschiedene Farben haben?

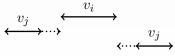
Beweis (Fortsetzung)

Für G = (V, E) erzeuge:

● (Rot m Gruen) ∧ (Gruen m Blau)

• Für die Knoten: $\forall v_i \in V : v_i \text{ m}, \equiv, \check{\mathtt{m}}$ Gruen

ullet Für die Kanten: $\forall (v_i,v_j) \in E: \ v_i \ \{\mathtt{m}, reve{\mathtt{m}}, \prec, \succ\} \ v_j$



M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

61/72

Folgerungen

- Jeder vollständige Algorithmus braucht Exponentialzeit. (unter Annahme $\mathcal{NP} = EXPTIME$)
- Die polynomielle Allen-Vervollständigung ist im allgemeinen unvollständig

Beweis (Fortsetzung)

Daher gilt: Der Graph ist dreifärbbar, gdw. die Allenschen Relationen erfüllbar sind. Die Zuordnung ist:

- v_i hat Farbe grün gdw. $v_i \equiv Gruen$
- v_i hat Farbe rot gdw. v_i m Gruen

ullet v_i hat Farbe blau gdw. v_i $lap{m}$ Gruen

Übersetzung ist in Polynomialzeit durchführbar, daher Erfüllbarkeit $\mathcal{NP} ext{-Hart}$

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

62/72

Varianten

Es gibt polynomielle, vollständige Verfahren für

Allensche Constraints mit eingeschränkter Syntax

Eine haben wir bereits gesehen:

Eindeutige Allen-Constraints

Varianten (2)

Neue Variante:

- Erlaube nur Allensche Relationen, so dass:
- ullet Übersetzung in Bedingungen über die Endpunkte nur Konjunktionen von der Form x < y oder x = y
- Dann gilt: Man braucht keine Fallunterscheidung

Passender Satz von Relationen:

- Alle Basisrelationen,
- $\{d, o, s\}$, und $\{\check{o}, f, d\}$ und deren Konverse. d.h. $\{\check{d}, \check{o}, \check{s}\}$, und $\{o, \check{f}, \check{d}\}$.

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

65/72

Varianten (4)

Auf solchen Constraints kann man Erfüllbarkeit in Polynomialzeit testen

- Transitiver Abschluss der Endpunktbeziehungen
- anschließend lineare Reihenfolge mit topologischem Sortieren

Es gilt aber sogar

Satz (Nebel, Bürckert, 1995)

Auf den so eingeschränkten Allen-Constraints ist der Allensche Kalkül korrekt und vollständig.

Varianten (3)

Z.B. $A\{d, o, s\}B$ als Ungleichung über den Endpunkten:

Wenn $A=[A_a,A_e], B=[B_a,B_e]$, dann entspricht obige Relation gerade

$$A_a < A_e, B_a < B_e, A_e < B_e, B_a < A_e$$

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

66/72

Hintergrund

Diese spezielle Klasse lässt sich als Grund-Hornklauseln darstellen, d.h. Klauseln mit maximal einem positiven Literal.

Für Grund-Hornklauselmengen ist Erfüllbarkeit in polynomieller Zeit testbar.

Man hat Fakten in der Form a < b und c = d, wobei a,b,c,d unbekannte Konstanten sind. Es gibt auch Hornklauseln, die von der Symmetrie und Transitivität stammen:

$$\begin{array}{cccc} x < y \wedge y < z & \Rightarrow & x < z \\ x = y \wedge y = z & \Rightarrow & x = z \\ x = y & \Rightarrow & y = x \\ x < y \wedge y = z & \Rightarrow & x < z \end{array}$$

Hintergrund (2)

Man kann weitere Allensche Constraints zulassen, und behält die Vollständigkeit des Allen-Kalküls:

- Alle Constraints deren Übersetzung in Constraints über Endpunkten Hornklauseln ausschließlich mit Literalen $a \leq b$, a = b und $\neg (a = b)$ erzeugt.
- Von den $2^{13} = 8192$ möglichen Beziehungen erfüllen 868 diese Eigenschaft

Man kann diese auch für die Fallunterscheidung des exponentiellen Verfahrens verwenden.

Vorteil: Kleinere mittlere Verzweigungsrate (Statt 6,5 nur 2,533 (Nebel 1997))

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

69/72

Varianten

Qualitatives räumliches Schließen

- Eindimensional: Genau die Allensche Intervalllogik
- Zweidimensional: Region-Connection-Calculus (RCC8), (Randell, Cui & Cohn, 1992)

X DC Y..disconnected"

 $X \to C Y$ "externally connected'

X PO Y"partially overlapping

X TPP Y"tangential

proper part'

proper part inverse"

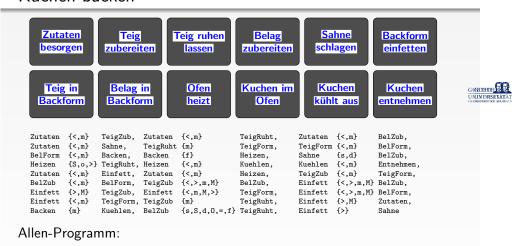
X NTPPi Y"non-tangential proper part inverse'

X NTPP Y

"non-tangential

proper part"

Kuchen backen



Max. #Modelle in der Eingabe : 177.247.393.995.618.482.069.389.150.242.626.279.322.671.526.463.930.368

Max. #Modelle nach Allen-Abschluss: 5.898.240

Anzahl Modelle : 1.536 Allenscher Abschluss genau? : True

M. Schmidt-Schauß · KI · SoSe 2025 · Allens Zeitlogik

70/72

Varianten

• Exakte Zeitpunkte vermeiden: Nur vorher, überlappend