

2

Contents

1 Control.DeepSeq 11

2 Data.IntMap.Base 15

2.1 Map type . 16

2.2 Operators . 16

2.3 Query . 16

2.4 Construction . 18

2.4.1 Insertion . 18

2.4.2 Delete/Update . 19

2.5 Combine . 21

2.5.1 Union . 21

2.5.2 Difference . 22

2.5.3 Intersection . 22

2.5.4 Universal combining function 23

2.6 Traversal . 24

2.6.1 Map . 24

2.7 Folds . 26

2.7.1 Strict folds . 27

2.8 Conversion . 27

3

4 CONTENTS

2.8.1 Lists . 28

2.8.2 Ordered lists . 29

2.9 Filter . 30

2.10 Submap . 32

2.11 Min/Max . 33

2.12 Debugging . 35

2.13 Internal types . 35

2.14 Utility . 35

3 Data.IntMap.Strict 37

3.1 Strictness properties . 38

3.2 Map type . 39

3.3 Operators . 39

3.4 Query . 40

3.5 Construction . 41

3.5.1 Insertion . 42

3.5.2 Delete/Update . 43

3.6 Combine . 44

3.6.1 Union . 44

3.6.2 Difference . 45

3.6.3 Intersection . 46

3.6.4 Universal combining function 46

3.7 Traversal . 47

3.7.1 Map . 47

3.8 Folds . 49

3.8.1 Strict folds . 50

CONTENTS 5

3.9 Conversion . 50

3.9.1 Lists . 51

3.9.2 Ordered lists . 52

3.10 Filter . 53

3.11 Submap . 55

3.12 Min/Max . 56

3.13 Debugging . 58

4 Data.IntSet 59

4.1 Strictness properties . 60

4.2 Set type . 60

4.3 Operators . 61

4.4 Query . 61

4.5 Construction . 62

4.6 Combine . 62

4.7 Filter . 63

4.8 Map . 63

4.9 Folds . 64

4.9.1 Strict folds . 64

4.9.2 Legacy folds . 64

4.10 Min/Max . 65

4.11 Conversion . 65

4.11.1 List . 65

4.11.2 Ordered list . 66

4.12 Debugging . 66

6 CONTENTS

5 Data.IntSet.Base 67

5.1 Set type . 68

5.2 Operators . 68

5.3 Query . 69

5.4 Construction . 70

5.5 Combine . 70

5.6 Filter . 71

5.7 Map . 71

5.8 Folds . 71

5.8.1 Strict folds . 72

5.8.2 Legacy folds . 72

5.9 Min/Max . 72

5.10 Conversion . 73

5.10.1 List . 73

5.10.2 Ordered list . 74

5.11 Debugging . 74

5.12 Internals . 74

6 Data.Map.Base 75

6.1 Map type . 76

6.2 Operators . 77

6.3 Query . 77

6.4 Construction . 79

6.4.1 Insertion . 79

6.4.2 Delete/Update . 81

6.5 Combine . 82

CONTENTS 7

6.5.1 Union . 82

6.5.2 Difference . 83

6.5.3 Intersection . 84

6.5.4 Universal combining function 85

6.6 Traversal . 85

6.6.1 Map . 85

6.7 Folds . 87

6.7.1 Strict folds . 88

6.8 Conversion . 89

6.8.1 Lists . 90

6.8.2 Ordered lists . 90

6.9 Filter . 92

6.10 Submap . 94

6.11 Indexed . 95

6.12 Min/Max . 96

6.13 Debugging . 98

7 Data.Map.Strict 101

7.1 Strictness properties . 102

7.2 Map type . 103

7.3 Operators . 103

7.4 Query . 103

7.5 Construction . 106

7.5.1 Insertion . 106

7.5.2 Delete/Update . 107

7.6 Combine . 109

8 CONTENTS

7.6.1 Union . 109

7.6.2 Difference . 110

7.6.3 Intersection . 111

7.6.4 Universal combining function 111

7.7 Traversal . 112

7.7.1 Map . 112

7.8 Folds . 114

7.8.1 Strict folds . 115

7.9 Conversion . 116

7.9.1 Lists . 116

7.9.2 Ordered lists . 117

7.10 Filter . 118

7.11 Submap . 120

7.12 Indexed . 121

7.13 Min/Max . 122

7.14 Debugging . 125

8 Data.Set.Base 127

8.1 Set type . 128

8.2 Operators . 128

8.3 Query . 128

8.4 Construction . 130

8.5 Combine . 130

8.6 Filter . 131

8.7 Map . 131

8.8 Folds . 132

CONTENTS 9

8.8.1 Strict folds . 132

8.8.2 Legacy folds . 132

8.9 Min/Max . 133

8.10 Conversion . 133

8.10.1 List . 133

8.10.2 Ordered list . 134

8.11 Debugging . 134

9 Data.StrictPair 137

10 Dpfs.DavisPutnamFiniteSets 139

10.0.1 Datatype . 139

10.1 Davis-Putnam procedures . 140

10.2 Rules: 1st Extension . 140

10.3 Rules: 2nd Extension . 141

10.4 Utilities . 142

11 Dpfs.Parser 143

12 Dpfs.Simp 145

13 Dpfs.SimpCnf 149

10 CONTENTS

Chapter 1

Control.DeepSeq

module Control.DeepSeq (

deepseq, ($!!), force, NFData(rnf)

) where

This module provides an overloaded function, deepseq, for fully evaluating data
structures (that is, evaluating to ”Normal Form”).

A typical use is to prevent resource leaks in lazy IO programs, by forcing all
characters from a file to be read. For example:

import System.IO

import Control.DeepSeq

main = do

h <- openFile "f" ReadMode

s <- hGetContents h

s ‘deepseq‘ hClose h

return s

deepseq differs from seq as it traverses data structures deeply, for example, seq
will evaluate only to the first constructor in the list:

> [1,2,undefined] ‘seq‘ 3

3

11

12 CHAPTER 1. CONTROL.DEEPSEQ

While deepseq will force evaluation of all the list elements:

> [1,2,undefined] ‘deepseq‘ 3

*** Exception: Prelude.undefined

Another common use is to ensure any exceptions hidden within lazy fields of a
data structure do not leak outside the scope of the exception handler, or to force
evaluation of a data structure in one thread, before passing to another thread
(preventing work moving to the wrong threads).

deepseq :: NFData a => a -> b -> b

deepseq: fully evaluates the first argument, before returning the second.

The name deepseq is used to illustrate the relationship to seq: where seq

is shallow in the sense that it only evaluates the top level of its argument,
deepseq traverses the entire data structure evaluating it completely.

deepseq can be useful for forcing pending exceptions, eradicating space
leaks, or forcing lazy I/O to happen. It is also useful in conjunction with
parallel Strategies (see the parallel package).

There is no guarantee about the ordering of evaluation. The imple-
mentation may evaluate the components of the structure in any order
or in parallel. To impose an actual order on evaluation, use pseq from
Control.Parallel in the parallel package.

($!!) :: NFData a => (a -> b) -> a -> b

the deep analogue of $!. In the expression f $!! x, x is fully evaluated
before the function f is applied to it.

force :: NFData a => a -> a

a variant of deepseq that is useful in some circumstances:

force x = x ‘deepseq‘ x

force x fully evaluates x, and then returns it. Note that force x only
performs evaluation when the value of force x itself is demanded, so es-
sentially it turns shallow evaluation into deep evaluation.

class NFData a where

A class of types that can be fully evaluated.

Methods

13

rnf :: a -> ()

rnf should reduce its argument to normal form (that is, fully evaluate
all sub-components), and then return ’()’.

The default implementation of rnf is

rnf a = a ‘seq‘ ()

which may be convenient when defining instances for data types with
no unevaluated fields (e.g. enumerations).

instance NFData Bool

instance NFData Char

instance NFData Double

instance NFData Float

instance NFData Int

instance NFData Int8

instance NFData Int16

instance NFData Int32

instance NFData Int64

instance NFData Integer

instance NFData Word

instance NFData Word8

instance NFData Word16

instance NFData Word32

instance NFData Word64

instance NFData ()

instance NFData Version

instance NFData IntSet

instance NFData a => NFData [a]

instance (Integral a, NFData a) => NFData (Ratio a)

instance NFData a => NFData (Maybe a)

instance (RealFloat a, NFData a) => NFData (Complex a)

instance NFData (Fixed a)

instance NFData a => NFData (Set a)

instance NFData a => NFData (IntMap a)

instance NFData (a -> b)

This instance is for convenience and consistency with seq. This assumes
that WHNF is equivalent to NF for functions.

14 CHAPTER 1. CONTROL.DEEPSEQ

instance (NFData a, NFData b) => NFData (Either a b)

instance (NFData a, NFData b) => NFData (a, b)

instance (Ix a, NFData a, NFData b) => NFData (Array a b)

instance (NFData k, NFData a) => NFData (Map k a)

instance (NFData a, NFData b, NFData c) => NFData (a, b, c)

instance (NFData a, NFData b, NFData c, NFData d) => NFData (a, b, c, d)

instance (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5)

instance (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6)

instance (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7)

instance (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8)

instance (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9)

Chapter 2

Data.IntMap.Base

module Data.IntMap.Base (

IntMap(Bin, Tip, Nil), Key, (!), (\\), null, size, member,

notMember, lookup, findWithDefault, lookupLT, lookupGT, lookupLE,

lookupGE, empty, singleton, insert, insertWith, insertWithKey,

insertLookupWithKey, delete, adjust, adjustWithKey, update,

updateWithKey, updateLookupWithKey, alter, union, unionWith,

unionWithKey, unions, unionsWith, difference, differenceWith,

differenceWithKey, intersection, intersectionWith, intersectionWithKey,

mergeWithKey, mergeWithKey’, map, mapWithKey, traverseWithKey,

mapAccum, mapAccumWithKey, mapAccumRWithKey, mapKeys, mapKeysWith,

mapKeysMonotonic, foldr, foldl, foldrWithKey, foldlWithKey, foldr’,

foldl’, foldrWithKey’, foldlWithKey’, elems, keys, assocs, keysSet,

fromSet, toList, fromList, fromListWith, fromListWithKey, toAscList,

toDescList, fromAscList, fromAscListWith, fromAscListWithKey,

fromDistinctAscList, filter, filterWithKey, partition,

partitionWithKey, mapMaybe, mapMaybeWithKey, mapEither,

mapEitherWithKey, split, splitLookup, isSubmapOf, isSubmapOfBy,

isProperSubmapOf, isProperSubmapOfBy, findMin, findMax, deleteMin,

deleteMax, deleteFindMin, deleteFindMax, updateMin, updateMax,

updateMinWithKey, updateMaxWithKey, minView, maxView, minViewWithKey,

maxViewWithKey, showTree, showTreeWith, Mask, Prefix, Nat,

natFromInt, intFromNat, shiftRL, shiftLL, join, bin, zero, nomatch,

match, mask, maskW, shorter, branchMask, highestBitMask, foldlStrict

) where

This defines the data structures and core (hidden) manipulations on represen-
tations.

15

16 CHAPTER 2. DATA.INTMAP.BASE

2.1 Map type

data IntMap a

= Bin !Prefix !Mask !(IntMap a) !(IntMap a)

| Tip !Key a

| Nil

A map of integers to values a.

instance Functor IntMap

instance Typeable1 IntMap

instance Foldable IntMap

instance Traversable IntMap

instance Eq a => Eq (IntMap a)

instance Data a => Data (IntMap a)

instance Ord a => Ord (IntMap a)

instance Read e => Read (IntMap e)

instance Show a => Show (IntMap a)

instance NFData a => NFData (IntMap a)

instance Monoid (IntMap a)

type Key = Int

2.2 Operators

(!) :: IntMap a -> Key -> a

O(min(n,W)). Find the value at a key. Calls error when the element can
not be found.

fromList [(5,’a’), (3,’b’)] ! 1 Error: element not in the map

fromList [(5,’a’), (3,’b’)] ! 5 == ’a’

(\\) :: IntMap a -> IntMap b -> IntMap a

Same as difference.

2.3 Query

null :: IntMap a -> Bool

O(1). Is the map empty?

Data.IntMap.null (empty) == True

Data.IntMap.null (singleton 1 ’a’) == False

2.3. QUERY 17

size :: IntMap a -> Int

O(n). Number of elements in the map.

size empty == 0

size (singleton 1 ’a’) == 1

size (fromList([(1,’a’), (2,’c’), (3,’b’)])) == 3

member :: Key -> IntMap a -> Bool

O(min(n,W)). Is the key a member of the map?

member 5 (fromList [(5,’a’), (3,’b’)]) == True

member 1 (fromList [(5,’a’), (3,’b’)]) == False

notMember :: Key -> IntMap a -> Bool

O(min(n,W)). Is the key not a member of the map?

notMember 5 (fromList [(5,’a’), (3,’b’)]) == False

notMember 1 (fromList [(5,’a’), (3,’b’)]) == True

lookup :: Key -> IntMap a -> Maybe a

O(min(n,W)). Lookup the value at a key in the map. See also lookup.

findWithDefault :: a -> Key -> IntMap a -> a

O(min(n,W)). The expression (findWithDefault def k map) returns the
value at key k or returns def when the key is not an element of the map.

findWithDefault ’x’ 1 (fromList [(5,’a’), (3,’b’)]) == ’x’

findWithDefault ’x’ 5 (fromList [(5,’a’), (3,’b’)]) == ’a’

lookupLT :: Key -> IntMap a -> Maybe (Key, a)

O(log n). Find largest key smaller than the given one and return the
corresponding (key, value) pair.

lookupLT 3 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLT 4 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupGT :: Key -> IntMap a -> Maybe (Key, a)

O(log n). Find smallest key greater than the given one and return the
corresponding (key, value) pair.

lookupGT 4 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGT 5 (fromList [(3,’a’), (5,’b’)]) == Nothing

18 CHAPTER 2. DATA.INTMAP.BASE

lookupLE :: Key -> IntMap a -> Maybe (Key, a)

O(log n). Find largest key smaller or equal to the given one and return
the corresponding (key, value) pair.

lookupLE 2 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLE 4 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupLE 5 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGE :: Key -> IntMap a -> Maybe (Key, a)

O(log n). Find smallest key greater or equal to the given one and return
the corresponding (key, value) pair.

lookupGE 3 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupGE 4 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGE 6 (fromList [(3,’a’), (5,’b’)]) == Nothing

2.4 Construction

empty :: IntMap a

O(1). The empty map.

empty == fromList []

size empty == 0

singleton :: Key -> a -> IntMap a

O(1). A map of one element.

singleton 1 ’a’ == fromList [(1, ’a’)]

size (singleton 1 ’a’) == 1

2.4.1 Insertion

insert :: Key -> a -> IntMap a -> IntMap a

O(min(n,W)). Insert a new key/value pair in the map. If the key is already
present in the map, the associated value is replaced with the supplied
value, i.e. insert is equivalent to insertWith const.

insert 5 ’x’ (fromList [(5,’a’), (3,’b’)]) == fromList [(3, ’b’), (5, ’x’)]

insert 7 ’x’ (fromList [(5,’a’), (3,’b’)]) == fromList [(3, ’b’), (5, ’a’), (7, ’x’)]

insert 5 ’x’ empty == singleton 5 ’x’

2.4. CONSTRUCTION 19

insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a

O(min(n,W)). Insert with a combining function. insertWith f key value

mp will insert the pair (key, value) into mp if key does not exist in the map.
If the key does exist, the function will insert f new_value old_value.

insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]

insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]

insertWith (++) 5 "xxx" empty == singleton 5 "xxx"

insertWithKey :: (Key -> a -> a -> a)

-> Key -> a -> IntMap a -> IntMap a

O(min(n,W)). Insert with a combining function. insertWithKey f key

value mp will insert the pair (key, value) into mp if key does not exist
in the map. If the key does exist, the function will insert f key new_value

old_value.

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]

insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]

insertWithKey f 5 "xxx" empty == singleton 5 "xxx"

insertLookupWithKey :: (Key -> a -> a -> a)

-> Key -> a -> IntMap a -> (Maybe a, IntMap a)

O(min(n,W)). The expression (insertLookupWithKey f k x map) is a pair
where the first element is equal to (lookup k map) and the second element
equal to (insertWithKey f k x map).

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])

insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")])

insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx")

This is how to define insertLookup using insertLookupWithKey:

let insertLookup kx x t = insertLookupWithKey (_ a _ -> a) kx x t

insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])

insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")])

2.4.2 Delete/Update

delete :: Key -> IntMap a -> IntMap a

O(min(n,W)). Delete a key and its value from the map. When the key is
not a member of the map, the original map is returned.

20 CHAPTER 2. DATA.INTMAP.BASE

delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

delete 5 empty == empty

adjust :: (a -> a) -> Key -> IntMap a -> IntMap a

O(min(n,W)). Adjust a value at a specific key. When the key is not a
member of the map, the original map is returned.

adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]

adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

adjust ("new " ++) 7 empty == empty

adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a

O(min(n,W)). Adjust a value at a specific key. When the key is not a
member of the map, the original map is returned.

let f key x = (show key) ++ ":new " ++ x

adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]

adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

adjustWithKey f 7 empty == empty

update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a

O(min(n,W)). The expression (update f k map) updates the value x at k

(if it is in the map). If (f x) is Nothing, the element is deleted. If it is
(Just y), the key k is bound to the new value y.

let f x = if x == "a" then Just "new a" else Nothing

update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]

update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateWithKey :: (Key -> a -> Maybe a)

-> Key -> IntMap a -> IntMap a

O(min(n,W)). The expression (update f k map) updates the value x at k

(if it is in the map). If (f k x) is Nothing, the element is deleted. If it is
(Just y), the key k is bound to the new value y.

let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing

updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]

updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

2.5. COMBINE 21

updateLookupWithKey :: (Key -> a -> Maybe a)

-> Key -> IntMap a -> (Maybe a, IntMap a)

O(min(n,W)). Lookup and update. The function returns original value,
if it is updated. This is different behavior than updateLookupWithKey. Re-
turns the original key value if the map entry is deleted.

let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing

updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")])

updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")])

updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a

O(min(n,W)). The expression (alter f k map) alters the value x at k, or
absence thereof. alter can be used to insert, delete, or update a value in
an IntMap. In short : lookup k (alter f k m) = f (lookup k m).

2.5 Combine

2.5.1 Union

union :: IntMap a -> IntMap a -> IntMap a

O(n+m). The (left-biased) union of two maps. It prefers the first map
when duplicate keys are encountered, i.e. (union == unionWith const).

union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a

O(n+m). The union with a combining function.

unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

unionWithKey :: (Key -> a -> a -> a)

-> IntMap a -> IntMap a -> IntMap a

O(n+m). The union with a combining function.

let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value

unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]

unions :: [IntMap a] -> IntMap a

The union of a list of maps.

22 CHAPTER 2. DATA.INTMAP.BASE

unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]

== fromList [(3, "b"), (5, "a"), (7, "C")]

unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]

== fromList [(3, "B3"), (5, "A3"), (7, "C")]

unionsWith :: (a -> a -> a) -> [IntMap a] -> IntMap a

The union of a list of maps, with a combining operation.

unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]

== fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

2.5.2 Difference

difference :: IntMap a -> IntMap b -> IntMap a

O(n+m). Difference between two maps (based on keys).

difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

differenceWith :: (a -> b -> Maybe a)

-> IntMap a -> IntMap b -> IntMap a

O(n+m). Difference with a combining function.

let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing

differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])

== singleton 3 "b:B"

differenceWithKey :: (Key -> a -> b -> Maybe a)

-> IntMap a -> IntMap b -> IntMap a

O(n+m). Difference with a combining function. When two equal keys are
encountered, the combining function is applied to the key and both values.
If it returns Nothing, the element is discarded (proper set difference). If it
returns (Just y), the element is updated with a new value y.

let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing

differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])

== singleton 3 "3:b|B"

2.5.3 Intersection

intersection :: IntMap a -> IntMap b -> IntMap a

O(n+m). The (left-biased) intersection of two maps (based on keys).

intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

2.5. COMBINE 23

intersectionWith :: (a -> b -> c)

-> IntMap a -> IntMap b -> IntMap c

O(n+m). The intersection with a combining function.

intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWithKey :: (Key -> a -> b -> c)

-> IntMap a -> IntMap b -> IntMap c

O(n+m). The intersection with a combining function.

let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar

intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

2.5.4 Universal combining function

mergeWithKey :: (Key -> a -> b -> Maybe c)

-> (IntMap a -> IntMap c)

-> (IntMap b -> IntMap c) -> IntMap a -> IntMap b -> IntMap c

O(n+m). A high-performance universal combining function. Using mergeWithKey,
all combining functions can be defined without any loss of efficiency (with
exception of union, difference and intersection, where sharing of some
nodes is lost with mergeWithKey).

Please make sure you know what is going on when using mergeWithKey,
otherwise you can be surprised by unexpected code growth or even cor-
ruption of the data structure.

When mergeWithKey is given three arguments, it is inlined to the call
site. You should therefore use mergeWithKey only to define your cus-
tom combining functions. For example, you could define unionWithKey,
differenceWithKey and intersectionWithKey as

myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2

myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2

myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2

When calling mergeWithKey combine only1 only2, a function combining
two IntMaps is created, such that

• if a key is present in both maps, it is passed with both corresponding
values to the combine function. Depending on the result, the key is
either present in the result with specified value, or is left out;

• a nonempty subtree present only in the first map is passed to only1

and the output is added to the result;

• a nonempty subtree present only in the second map is passed to only2

and the output is added to the result.

24 CHAPTER 2. DATA.INTMAP.BASE

The only1 and only2 methods must return a map with a subset (possibly
empty) of the keys of the given map. The values can be modified arbitrar-
ily. Most common variants of only1 and only2 are id and const empty,
but for example map f or filterWithKey f could be used for any f.

mergeWithKey’ :: (Prefix -> Mask -> IntMap c -> IntMap c -> IntMap c) -> (IntMap a -> IntMap b -> IntMap c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c) -> IntMap a -> IntMap b -> IntMap c

2.6 Traversal

2.6.1 Map

map :: (a -> b) -> IntMap a -> IntMap b

O(n). Map a function over all values in the map.

map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]

mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b

O(n). Map a function over all values in the map.

let f key x = (show key) ++ ":" ++ x

mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]

traverseWithKey :: Applicative t => (Key -> a -> t b)

-> IntMap a -> t (IntMap b)

O(n). traverseWithKey f s == fromList $ traverse ((k, v) -> (,) k $

f k v) (toList m) That is, behaves exactly like a regular traverse except
that the traversing function also has access to the key associated with a
value.

traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, ’a’), (5, ’e’)]) == Just (fromList [(1, ’b’), (5, ’f’)])

traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, ’c’)]) == Nothing

mapAccum :: (a -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)

O(n). The function mapAccum threads an accumulating argument through
the map in ascending order of keys.

let f a b = (a ++ b, b ++ "X")

mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])

$
$

2.6. TRAVERSAL 25

mapAccumWithKey :: (a -> Key -> b -> (a, c))

-> a -> IntMap b -> (a, IntMap c)

O(n). The function mapAccumWithKey threads an accumulating argument
through the map in ascending order of keys.

let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X")

mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])

mapAccumRWithKey :: (a -> Key -> b -> (a, c))

-> a -> IntMap b -> (a, IntMap c)

O(n). The function mapAccumR threads an accumulating argument through
the map in descending order of keys.

mapKeys :: (Key -> Key) -> IntMap a -> IntMap a

O(n*min(n,W)). mapKeys f s is the map obtained by applying f to each
key of s.

The size of the result may be smaller if f maps two or more distinct keys
to the same new key. In this case the value at the greatest of the original
keys is retained.

mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")]

mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c"

mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"

mapKeysWith :: (a -> a -> a)

-> (Key -> Key) -> IntMap a -> IntMap a

O(n*min(n,W)). mapKeysWith c f s is the map obtained by applying f to
each key of s.

The size of the result may be smaller if f maps two or more distinct keys
to the same new key. In this case the associated values will be combined
using c.

mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab"

mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"

mapKeysMonotonic :: (Key -> Key) -> IntMap a -> IntMap a

O(n*min(n,W)). mapKeysMonotonic f s == mapKeys f s, but works only
when f is strictly monotonic. That is, for any values x and y, if x ¡ y then
f x ¡ f y. The precondition is not checked. Semi-formally, we have:

and [x < y ==> f x < f y | x <- ls, y <- ls]

==> mapKeysMonotonic f s == mapKeys f s

where ls = keys s

26 CHAPTER 2. DATA.INTMAP.BASE

This means that f maps distinct original keys to distinct resulting keys.
This function has slightly better performance than mapKeys.

mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")]

2.7 Folds

foldr :: (a -> b -> b) -> b -> IntMap a -> b

O(n). Fold the values in the map using the given right-associative binary
operator, such that foldr f z == foldr f z . elems.

For example,

elems map = foldr (:) [] map

let f a len = len + (length a)

foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4

foldl :: (a -> b -> a) -> a -> IntMap b -> a

O(n). Fold the values in the map using the given left-associative binary
operator, such that foldl f z == foldl f z . elems.

For example,

elems = reverse . foldl (flip (:)) []

let f len a = len + (length a)

foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4

foldrWithKey :: (Int -> a -> b -> b) -> b -> IntMap a -> b

O(n). Fold the keys and values in the map using the given right-associative
binary operator, such that foldrWithKey f z == foldr (uncurry f) z .

toAscList.

For example,

keys map = foldrWithKey (\k x ks -> k:ks) [] map

let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"

foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)"

foldlWithKey :: (a -> Int -> b -> a) -> a -> IntMap b -> a

O(n). Fold the keys and values in the map using the given left-associative
binary operator, such that foldlWithKey f z == foldl (\z’ (kx, x) -> f

z’ kx x) z . toAscList.

For example,

2.8. CONVERSION 27

keys = reverse . foldlWithKey (\ks k x -> k:ks) []

let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"

foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)"

2.7.1 Strict folds

foldr’ :: (a -> b -> b) -> b -> IntMap a -> b

O(n). A strict version of foldr. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldl’ :: (a -> b -> a) -> a -> IntMap b -> a

O(n). A strict version of foldl. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldrWithKey’ :: (Int -> a -> b -> b) -> b -> IntMap a -> b

O(n). A strict version of foldrWithKey. Each application of the operator
is evaluated before using the result in the next application. This function
is strict in the starting value.

foldlWithKey’ :: (a -> Int -> b -> a) -> a -> IntMap b -> a

O(n). A strict version of foldlWithKey. Each application of the operator
is evaluated before using the result in the next application. This function
is strict in the starting value.

2.8 Conversion

elems :: IntMap a -> [a]

O(n). Return all elements of the map in the ascending order of their keys.
Subject to list fusion.

elems (fromList [(5,"a"), (3,"b")]) == ["b","a"]

elems empty == []

keys :: IntMap a -> [Key]

O(n). Return all keys of the map in ascending order. Subject to list
fusion.

28 CHAPTER 2. DATA.INTMAP.BASE

keys (fromList [(5,"a"), (3,"b")]) == [3,5]

keys empty == []

assocs :: IntMap a -> [(Key, a)]

O(n). An alias for toAscList. Returns all key/value pairs in the map in
ascending key order. Subject to list fusion.

assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

assocs empty == []

keysSet :: IntMap a -> IntSet

O(n*min(n,W)). The set of all keys of the map.

keysSet (fromList [(5,"a"), (3,"b")]) == Data.IntSet.fromList [3,5]

keysSet empty == Data.IntSet.empty

fromSet :: (Key -> a) -> IntSet -> IntMap a

O(n). Build a map from a set of keys and a function which for each key
computes its value.

fromSet (\k -> replicate k ’a’) (Data.IntSet.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")]

fromSet undefined Data.IntSet.empty == empty

2.8.1 Lists

toList :: IntMap a -> [(Key, a)]

O(n). Convert the map to a list of key/value pairs. Subject to list fusion.

toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toList empty == []

fromList :: [(Key, a)] -> IntMap a

O(n*min(n,W)). Create a map from a list of key/value pairs.

fromList [] == empty

fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]

fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

fromListWith :: (a -> a -> a) -> [(Key, a)] -> IntMap a

O(n*min(n,W)). Create a map from a list of key/value pairs with a com-
bining function. See also fromAscListWith.

2.8. CONVERSION 29

fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"c")] == fromList [(3, "ab"), (5, "cba")]

fromListWith (++) [] == empty

fromListWithKey :: (Key -> a -> a -> a) -> [(Key, a)] -> IntMap a

O(n*min(n,W)). Build a map from a list of key/value pairs with a com-
bining function. See also fromAscListWithKey’.

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"c")] == fromList [(3, "3:a|b"), (5, "5:c|5:b|a")]

fromListWithKey f [] == empty

2.8.2 Ordered lists

toAscList :: IntMap a -> [(Key, a)]

O(n). Convert the map to a list of key/value pairs where the keys are in
ascending order. Subject to list fusion.

toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toDescList :: IntMap a -> [(Key, a)]

O(n). Convert the map to a list of key/value pairs where the keys are in
descending order. Subject to list fusion.

toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")]

fromAscList :: [(Key, a)] -> IntMap a

O(n). Build a map from a list of key/value pairs where the keys are in
ascending order.

fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]

fromAscListWith :: (a -> a -> a) -> [(Key, a)] -> IntMap a

O(n). Build a map from a list of key/value pairs where the keys are in as-
cending order, with a combining function on equal keys. The precondition
(input list is ascending) is not checked.

fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]

fromAscListWithKey :: (Key -> a -> a -> a)

-> [(Key, a)] -> IntMap a

O(n). Build a map from a list of key/value pairs where the keys are in as-
cending order, with a combining function on equal keys. The precondition
(input list is ascending) is not checked.

30 CHAPTER 2. DATA.INTMAP.BASE

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "5:b|a")]

fromDistinctAscList :: [(Key, a)] -> IntMap a

O(n). Build a map from a list of key/value pairs where the keys are in
ascending order and all distinct. The precondition (input list is strictly
ascending) is not checked.

fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

2.9 Filter

filter :: (a -> Bool) -> IntMap a -> IntMap a

O(n). Filter all values that satisfy some predicate.

filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty

filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty

filterWithKey :: (Key -> a -> Bool) -> IntMap a -> IntMap a

O(n). Filter all keys/values that satisfy some predicate.

filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

partition :: (a -> Bool) -> IntMap a -> (IntMap a, IntMap a)

O(n). Partition the map according to some predicate. The first map
contains all elements that satisfy the predicate, the second all elements
that fail the predicate. See also split.

partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")

partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)

partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

partitionWithKey :: (Key -> a -> Bool)

-> IntMap a -> (IntMap a, IntMap a)

O(n). Partition the map according to some predicate. The first map
contains all elements that satisfy the predicate, the second all elements
that fail the predicate. See also split.

partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b")

partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)

partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

2.9. FILTER 31

mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b

O(n). Map values and collect the Just results.

let f x = if x == "a" then Just "new a" else Nothing

mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"

mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b

O(n). Map keys/values and collect the Just results.

let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing

mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"

mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)

O(n). Map values and separate the Left and Right results.

let f a = if a < "c" then Left a else Right a

mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")])

mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

mapEitherWithKey :: (Key -> a -> Either b c)

-> IntMap a -> (IntMap b, IntMap c)

O(n). Map keys/values and separate the Left and Right results.

let f k a = if k < 5 then Left (k * 2) else Right (a ++ a)

mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")])

mapEitherWithKey (_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])

split :: Key -> IntMap a -> (IntMap a, IntMap a)

O(min(n,W)). The expression (split k map) is a pair (map1,map2) where
all keys in map1 are lower than k and all keys in map2 larger than k. Any
key equal to k is found in neither map1 nor map2.

split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")])

split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a")

split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")

split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty)

split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty)

32 CHAPTER 2. DATA.INTMAP.BASE

splitLookup :: Key -> IntMap a -> (IntMap a, Maybe a, IntMap a)

O(min(n,W)). Performs a split but also returns whether the pivot key
was found in the original map.

splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")])

splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a")

splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a")

splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty)

splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty)

2.10 Submap

isSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool

O(n+m). Is this a submap? Defined as (isSubmapOf = isSubmapOfBy

(==)).

isSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool

O(n+m). The expression (isSubmapOfBy f m1 m2) returns True if all keys
in m1 are in m2, and when f returns True when applied to their respective
values. For example, the following expressions are all True:

isSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

But the following are all False:

isSubmapOfBy (==) (fromList [(1,2)]) (fromList [(1,1),(2,2)])

isSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])

isProperSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). Defined
as (isProperSubmapOf = isProperSubmapOfBy (==)).

isProperSubmapOfBy :: (a -> b -> Bool)

-> IntMap a -> IntMap b -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). The
expression (isProperSubmapOfBy f m1 m2) returns True when m1 and m2 are
not equal, all keys in m1 are in m2, and when f returns True when applied
to their respective values. For example, the following expressions are all
True:

2.11. MIN/MAX 33

isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

But the following are all False:

isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])

isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

2.11 Min/Max

findMin :: IntMap a -> (Key, a)

O(min(n,W)). The minimal key of the map.

findMax :: IntMap a -> (Key, a)

O(min(n,W)). The maximal key of the map.

deleteMin :: IntMap a -> IntMap a

O(min(n,W)). Delete the minimal key. An error is thrown if the IntMap
is already empty. Note, this is not the same behavior Map.

deleteMax :: IntMap a -> IntMap a

O(min(n,W)). Delete the maximal key. An error is thrown if the IntMap
is already empty. Note, this is not the same behavior Map.

deleteFindMin :: IntMap a -> ((Key, a), IntMap a)

O(min(n,W)). Delete and find the minimal element.

deleteFindMax :: IntMap a -> ((Key, a), IntMap a)

O(min(n,W)). Delete and find the maximal element.

updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a

O(min(n,W)). Update the value at the minimal key.

updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]

updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a

O(min(n,W)). Update the value at the maximal key.

34 CHAPTER 2. DATA.INTMAP.BASE

updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]

updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a

O(min(n,W)). Update the value at the minimal key.

updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]

updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a

O(min(n,W)). Update the value at the maximal key.

updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]

updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

minView :: IntMap a -> Maybe (a, IntMap a)

O(min(n,W)). Retrieves the minimal key of the map, and the map stripped
of that element, or Nothing if passed an empty map.

maxView :: IntMap a -> Maybe (a, IntMap a)

O(min(n,W)). Retrieves the maximal key of the map, and the map stripped
of that element, or Nothing if passed an empty map.

minViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a)

O(min(n,W)). Retrieves the minimal (key,value) pair of the map, and the
map stripped of that element, or Nothing if passed an empty map.

minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a")

minViewWithKey empty == Nothing

maxViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a)

O(min(n,W)). Retrieves the maximal (key,value) pair of the map, and the
map stripped of that element, or Nothing if passed an empty map.

maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b")

maxViewWithKey empty == Nothing

2.12. DEBUGGING 35

2.12 Debugging

showTree :: Show a => IntMap a -> String

O(n). Show the tree that implements the map. The tree is shown in a
compressed, hanging format.

showTreeWith :: Show a => Bool -> Bool -> IntMap a -> String

O(n). The expression (showTreeWith hang wide map) shows the tree that
implements the map. If hang is True, a hanging tree is shown otherwise a
rotated tree is shown. If wide is True, an extra wide version is shown.

2.13 Internal types

type Mask = Int

type Prefix = Int

type Nat = Word

2.14 Utility

natFromInt :: Key -> Nat

intFromNat :: Nat -> Key

shiftRL :: Nat -> Key -> Nat

shiftLL :: Nat -> Key -> Nat

join :: Prefix -> IntMap a -> Prefix -> IntMap a -> IntMap a

bin :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a

zero :: Key -> Mask -> Bool

nomatch :: Key -> Prefix -> Mask -> Bool

match :: Key -> Prefix -> Mask -> Bool

mask :: Key -> Mask -> Prefix

maskW :: Nat -> Nat -> Prefix

shorter :: Mask -> Mask -> Bool

36 CHAPTER 2. DATA.INTMAP.BASE

branchMask :: Prefix -> Prefix -> Mask

highestBitMask :: Nat -> Nat

foldlStrict :: (a -> b -> a) -> a -> [b] -> a

Chapter 3

Data.IntMap.Strict

module Data.IntMap.Strict (

IntMap, Key, (!), (\\), null, size, member, notMember, lookup,

findWithDefault, lookupLT, lookupGT, lookupLE, lookupGE, empty,

singleton, insert, insertWith, insertWithKey, insertLookupWithKey,

delete, adjust, adjustWithKey, update, updateWithKey,

updateLookupWithKey, alter, union, unionWith, unionWithKey, unions,

unionsWith, difference, differenceWith, differenceWithKey,

intersection, intersectionWith, intersectionWithKey, mergeWithKey, map,

mapWithKey, traverseWithKey, mapAccum, mapAccumWithKey,

mapAccumRWithKey, mapKeys, mapKeysWith, mapKeysMonotonic, foldr,

foldl, foldrWithKey, foldlWithKey, foldr’, foldl’, foldrWithKey’,

foldlWithKey’, elems, keys, assocs, keysSet, fromSet, toList,

fromList, fromListWith, fromListWithKey, toAscList, toDescList,

fromAscList, fromAscListWith, fromAscListWithKey, fromDistinctAscList,

filter, filterWithKey, partition, partitionWithKey, mapMaybe,

mapMaybeWithKey, mapEither, mapEitherWithKey, split, splitLookup,

isSubmapOf, isSubmapOfBy, isProperSubmapOf, isProperSubmapOfBy,

findMin, findMax, deleteMin, deleteMax, deleteFindMin, deleteFindMax,

updateMin, updateMax, updateMinWithKey, updateMaxWithKey, minView,

maxView, minViewWithKey, maxViewWithKey, showTree, showTreeWith

) where

An efficient implementation of maps from integer keys to values (dictionaries).

API of this module is strict in both the keys and the values. If you need
value-lazy maps, use Lazy instead. The IntMap type itself is shared between the

37

38 CHAPTER 3. DATA.INTMAP.STRICT

lazy and strict modules, meaning that the same IntMap value can be passed to
functions in both modules (although that is rarely needed).

These modules are intended to be imported qualified, to avoid name clashes
with Prelude functions, e.g.

import Data.IntMap.Strict (IntMap)

import qualified Data.IntMap.Strict as IntMap

The implementation is based on big-endian patricia trees. This data struc-
ture performs especially well on binary operations like union and intersection.
However, my benchmarks show that it is also (much) faster on insertions and
deletions when compared to a generic size-balanced map implementation (see
Data.Map).

• Chris Okasaki and Andy Gill, ”Fast Mergeable Integer Maps”, Workshop
on ML, September 1998, pages 77-86, http://citeseer.ist.psu.edu/
okasaki98fast.html

• D.R. Morrison, ”/PATRICIA – Practical Algorithm To Retrieve Informa-
tion Coded In Alphanumeric/”, Journal of the ACM, 15(4), October 1968,
pages 514-534.

Operation comments contain the operation time complexity in the Big-O no-
tation http://en.wikipedia.org/wiki/Big_O_notation. Many operations
have a worst-case complexity of O(min(n,W)). This means that the operation
can become linear in the number of elements with a maximum of W – the
number of bits in an Int (32 or 64).

Be aware that the Functor, Traversable and Data instances are the same as for
the Lazy module, so if they are used on strict maps, the resulting maps will be
lazy.

3.1 Strictness properties

This module satisfies the following strictness properties:

1. Key and value arguments are evaluated to WHNF;

2. Keys and values are evaluated to WHNF before they are stored in the
map.

http://citeseer.ist.psu.edu/okasaki98fast.html
http://citeseer.ist.psu.edu/okasaki98fast.html
http://en.wikipedia.org/wiki/Big_O_notation

3.2. MAP TYPE 39

Here are some examples that illustrate the first property:

insertWith (\ new old -> old) k undefined m == undefined

delete undefined m == undefined

Here are some examples that illustrate the second property:

map (\ v -> undefined) m == undefined -- m is not empty

mapKeys (\ k -> undefined) m == undefined -- m is not empty

3.2 Map type

data IntMap a

A map of integers to values a.

instance Functor IntMap

instance Typeable1 IntMap

instance Foldable IntMap

instance Traversable IntMap

instance Eq a => Eq (IntMap a)

instance Data a => Data (IntMap a)

instance Ord a => Ord (IntMap a)

instance Read e => Read (IntMap e)

instance Show a => Show (IntMap a)

instance NFData a => NFData (IntMap a)

instance Monoid (IntMap a)

type Key = Int

3.3 Operators

(!) :: IntMap a -> Key -> a

O(min(n,W)). Find the value at a key. Calls error when the element can
not be found.

fromList [(5,’a’), (3,’b’)] ! 1 Error: element not in the map

fromList [(5,’a’), (3,’b’)] ! 5 == ’a’

(\\) :: IntMap a -> IntMap b -> IntMap a

Same as difference.

40 CHAPTER 3. DATA.INTMAP.STRICT

3.4 Query

null :: IntMap a -> Bool

O(1). Is the map empty?

Data.IntMap.null (empty) == True

Data.IntMap.null (singleton 1 ’a’) == False

size :: IntMap a -> Int

O(n). Number of elements in the map.

size empty == 0

size (singleton 1 ’a’) == 1

size (fromList([(1,’a’), (2,’c’), (3,’b’)])) == 3

member :: Key -> IntMap a -> Bool

O(min(n,W)). Is the key a member of the map?

member 5 (fromList [(5,’a’), (3,’b’)]) == True

member 1 (fromList [(5,’a’), (3,’b’)]) == False

notMember :: Key -> IntMap a -> Bool

O(min(n,W)). Is the key not a member of the map?

notMember 5 (fromList [(5,’a’), (3,’b’)]) == False

notMember 1 (fromList [(5,’a’), (3,’b’)]) == True

lookup :: Key -> IntMap a -> Maybe a

O(min(n,W)). Lookup the value at a key in the map. See also lookup.

findWithDefault :: a -> Key -> IntMap a -> a

O(min(n,W)). The expression (findWithDefault def k map) returns the
value at key k or returns def when the key is not an element of the map.

findWithDefault ’x’ 1 (fromList [(5,’a’), (3,’b’)]) == ’x’

findWithDefault ’x’ 5 (fromList [(5,’a’), (3,’b’)]) == ’a’

lookupLT :: Key -> IntMap a -> Maybe (Key, a)

O(log n). Find largest key smaller than the given one and return the
corresponding (key, value) pair.

3.5. CONSTRUCTION 41

lookupLT 3 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLT 4 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupGT :: Key -> IntMap a -> Maybe (Key, a)

O(log n). Find smallest key greater than the given one and return the
corresponding (key, value) pair.

lookupGT 4 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGT 5 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLE :: Key -> IntMap a -> Maybe (Key, a)

O(log n). Find largest key smaller or equal to the given one and return
the corresponding (key, value) pair.

lookupLE 2 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLE 4 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupLE 5 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGE :: Key -> IntMap a -> Maybe (Key, a)

O(log n). Find smallest key greater or equal to the given one and return
the corresponding (key, value) pair.

lookupGE 3 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupGE 4 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGE 6 (fromList [(3,’a’), (5,’b’)]) == Nothing

3.5 Construction

empty :: IntMap a

O(1). The empty map.

empty == fromList []

size empty == 0

singleton :: Key -> a -> IntMap a

O(1). A map of one element.

singleton 1 ’a’ == fromList [(1, ’a’)]

size (singleton 1 ’a’) == 1

42 CHAPTER 3. DATA.INTMAP.STRICT

3.5.1 Insertion

insert :: Key -> a -> IntMap a -> IntMap a

O(min(n,W)). Insert a new key/value pair in the map. If the key is already
present in the map, the associated value is replaced with the supplied
value, i.e. insert is equivalent to insertWith const.

insert 5 ’x’ (fromList [(5,’a’), (3,’b’)]) == fromList [(3, ’b’), (5, ’x’)]

insert 7 ’x’ (fromList [(5,’a’), (3,’b’)]) == fromList [(3, ’b’), (5, ’a’), (7, ’x’)]

insert 5 ’x’ empty == singleton 5 ’x’

insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a

O(min(n,W)). Insert with a combining function. insertWith f key value

mp will insert the pair (key, value) into mp if key does not exist in the map.
If the key does exist, the function will insert f new_value old_value.

insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]

insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]

insertWith (++) 5 "xxx" empty == singleton 5 "xxx"

insertWithKey :: (Key -> a -> a -> a)

-> Key -> a -> IntMap a -> IntMap a

O(min(n,W)). Insert with a combining function. insertWithKey f key

value mp will insert the pair (key, value) into mp if key does not exist
in the map. If the key does exist, the function will insert f key new_value

old_value.

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]

insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]

insertWithKey f 5 "xxx" empty == singleton 5 "xxx"

If the key exists in the map, this function is lazy in x but strict in the
result of f.

insertLookupWithKey :: (Key -> a -> a -> a)

-> Key -> a -> IntMap a -> (Maybe a, IntMap a)

O(min(n,W)). The expression (insertLookupWithKey f k x map) is a pair
where the first element is equal to (lookup k map) and the second element
equal to (insertWithKey f k x map).

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])

insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")])

insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx")

3.5. CONSTRUCTION 43

This is how to define insertLookup using insertLookupWithKey:

let insertLookup kx x t = insertLookupWithKey (_ a _ -> a) kx x t

insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])

insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")])

3.5.2 Delete/Update

delete :: Key -> IntMap a -> IntMap a

O(min(n,W)). Delete a key and its value from the map. When the key is
not a member of the map, the original map is returned.

delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

delete 5 empty == empty

adjust :: (a -> a) -> Key -> IntMap a -> IntMap a

O(min(n,W)). Adjust a value at a specific key. When the key is not a
member of the map, the original map is returned.

adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]

adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

adjust ("new " ++) 7 empty == empty

adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a

O(min(n,W)). Adjust a value at a specific key. When the key is not a
member of the map, the original map is returned.

let f key x = (show key) ++ ":new " ++ x

adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]

adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

adjustWithKey f 7 empty == empty

update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a

O(min(n,W)). The expression (update f k map) updates the value x at k

(if it is in the map). If (f x) is Nothing, the element is deleted. If it is
(Just y), the key k is bound to the new value y.

let f x = if x == "a" then Just "new a" else Nothing

update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]

update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

44 CHAPTER 3. DATA.INTMAP.STRICT

updateWithKey :: (Key -> a -> Maybe a)

-> Key -> IntMap a -> IntMap a

O(min(n,W)). The expression (update f k map) updates the value x at k

(if it is in the map). If (f k x) is Nothing, the element is deleted. If it is
(Just y), the key k is bound to the new value y.

let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing

updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]

updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateLookupWithKey :: (Key -> a -> Maybe a)

-> Key -> IntMap a -> (Maybe a, IntMap a)

O(min(n,W)). Lookup and update. The function returns original value,
if it is updated. This is different behavior than updateLookupWithKey. Re-
turns the original key value if the map entry is deleted.

let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing

updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")])

updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")])

updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a

O(log n). The expression (alter f k map) alters the value x at k, or ab-
sence thereof. alter can be used to insert, delete, or update a value in an
IntMap. In short : lookup k (alter f k m) = f (lookup k m).

3.6 Combine

3.6.1 Union

union :: IntMap a -> IntMap a -> IntMap a

O(n+m). The (left-biased) union of two maps. It prefers the first map
when duplicate keys are encountered, i.e. (union == unionWith const).

union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a

O(n+m). The union with a combining function.

unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

3.6. COMBINE 45

unionWithKey :: (Key -> a -> a -> a)

-> IntMap a -> IntMap a -> IntMap a

O(n+m). The union with a combining function.

let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value

unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]

unions :: [IntMap a] -> IntMap a

The union of a list of maps.

unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]

== fromList [(3, "b"), (5, "a"), (7, "C")]

unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]

== fromList [(3, "B3"), (5, "A3"), (7, "C")]

unionsWith :: (a -> a -> a) -> [IntMap a] -> IntMap a

The union of a list of maps, with a combining operation.

unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]

== fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

3.6.2 Difference

difference :: IntMap a -> IntMap b -> IntMap a

O(n+m). Difference between two maps (based on keys).

difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

differenceWith :: (a -> b -> Maybe a)

-> IntMap a -> IntMap b -> IntMap a

O(n+m). Difference with a combining function.

let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing

differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])

== singleton 3 "b:B"

differenceWithKey :: (Key -> a -> b -> Maybe a)

-> IntMap a -> IntMap b -> IntMap a

O(n+m). Difference with a combining function. When two equal keys are
encountered, the combining function is applied to the key and both values.
If it returns Nothing, the element is discarded (proper set difference). If it
returns (Just y), the element is updated with a new value y.

let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing

differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])

== singleton 3 "3:b|B"

46 CHAPTER 3. DATA.INTMAP.STRICT

3.6.3 Intersection

intersection :: IntMap a -> IntMap b -> IntMap a

O(n+m). The (left-biased) intersection of two maps (based on keys).

intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

intersectionWith :: (a -> b -> c)

-> IntMap a -> IntMap b -> IntMap c

O(n+m). The intersection with a combining function.

intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWithKey :: (Key -> a -> b -> c)

-> IntMap a -> IntMap b -> IntMap c

O(n+m). The intersection with a combining function.

let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar

intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

3.6.4 Universal combining function

mergeWithKey :: (Key -> a -> b -> Maybe c)

-> (IntMap a -> IntMap c)

-> (IntMap b -> IntMap c) -> IntMap a -> IntMap b -> IntMap c

O(n+m). A high-performance universal combining function. Using mergeWithKey,
all combining functions can be defined without any loss of efficiency (with
exception of union, difference and intersection, where sharing of some
nodes is lost with mergeWithKey).

Please make sure you know what is going on when using mergeWithKey,
otherwise you can be surprised by unexpected code growth or even cor-
ruption of the data structure.

When mergeWithKey is given three arguments, it is inlined to the call
site. You should therefore use mergeWithKey only to define your cus-
tom combining functions. For example, you could define unionWithKey,
differenceWithKey and intersectionWithKey as

myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2

myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2

myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2

When calling mergeWithKey combine only1 only2, a function combining
two IntMaps is created, such that

3.7. TRAVERSAL 47

• if a key is present in both maps, it is passed with both corresponding
values to the combine function. Depending on the result, the key is
either present in the result with specified value, or is left out;

• a nonempty subtree present only in the first map is passed to only1

and the output is added to the result;

• a nonempty subtree present only in the second map is passed to only2

and the output is added to the result.

The only1 and only2 methods must return a map with a subset (possibly
empty) of the keys of the given map. The values can be modified arbitrar-
ily. Most common variants of only1 and only2 are id and const empty,
but for example map f or filterWithKey f could be used for any f.

3.7 Traversal

3.7.1 Map

map :: (a -> b) -> IntMap a -> IntMap b

O(n). Map a function over all values in the map.

map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]

mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b

O(n). Map a function over all values in the map.

let f key x = (show key) ++ ":" ++ x

mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]

traverseWithKey :: Applicative t => (Key -> a -> t b)

-> IntMap a -> t (IntMap b)

O(n). traverseWithKey f s == fromList $ traverse ((k, v) -> (,) k $

f k v) (toList m) That is, behaves exactly like a regular traverse except
that the traversing function also has access to the key associated with a
value.

traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, ’a’), (5, ’e’)]) == Just (fromList [(1, ’b’), (5, ’f’)])

traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, ’c’)]) == Nothing

mapAccum :: (a -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)

O(n). The function mapAccum threads an accumulating argument through
the map in ascending order of keys.

$
$

48 CHAPTER 3. DATA.INTMAP.STRICT

let f a b = (a ++ b, b ++ "X")

mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])

mapAccumWithKey :: (a -> Key -> b -> (a, c))

-> a -> IntMap b -> (a, IntMap c)

O(n). The function mapAccumWithKey threads an accumulating argument
through the map in ascending order of keys.

let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X")

mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])

mapAccumRWithKey :: (a -> Key -> b -> (a, c))

-> a -> IntMap b -> (a, IntMap c)

O(n). The function mapAccumR threads an accumulating argument through
the map in descending order of keys.

mapKeys :: (Key -> Key) -> IntMap a -> IntMap a

O(n*min(n,W)). mapKeys f s is the map obtained by applying f to each
key of s.

The size of the result may be smaller if f maps two or more distinct keys
to the same new key. In this case the value at the greatest of the original
keys is retained.

mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")]

mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c"

mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"

mapKeysWith :: (a -> a -> a)

-> (Key -> Key) -> IntMap a -> IntMap a

O(n*log n). mapKeysWith c f s is the map obtained by applying f to each
key of s.

The size of the result may be smaller if f maps two or more distinct keys
to the same new key. In this case the associated values will be combined
using c.

mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab"

mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"

mapKeysMonotonic :: (Key -> Key) -> IntMap a -> IntMap a

O(n*min(n,W)). mapKeysMonotonic f s == mapKeys f s, but works only
when f is strictly monotonic. That is, for any values x and y, if x ¡ y then
f x ¡ f y. The precondition is not checked. Semi-formally, we have:

3.8. FOLDS 49

and [x < y ==> f x < f y | x <- ls, y <- ls]

==> mapKeysMonotonic f s == mapKeys f s

where ls = keys s

This means that f maps distinct original keys to distinct resulting keys.
This function has slightly better performance than mapKeys.

mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")]

3.8 Folds

foldr :: (a -> b -> b) -> b -> IntMap a -> b

O(n). Fold the values in the map using the given right-associative binary
operator, such that foldr f z == foldr f z . elems.

For example,

elems map = foldr (:) [] map

let f a len = len + (length a)

foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4

foldl :: (a -> b -> a) -> a -> IntMap b -> a

O(n). Fold the values in the map using the given left-associative binary
operator, such that foldl f z == foldl f z . elems.

For example,

elems = reverse . foldl (flip (:)) []

let f len a = len + (length a)

foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4

foldrWithKey :: (Int -> a -> b -> b) -> b -> IntMap a -> b

O(n). Fold the keys and values in the map using the given right-associative
binary operator, such that foldrWithKey f z == foldr (uncurry f) z .

toAscList.

For example,

keys map = foldrWithKey (\k x ks -> k:ks) [] map

let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"

foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)"

50 CHAPTER 3. DATA.INTMAP.STRICT

foldlWithKey :: (a -> Int -> b -> a) -> a -> IntMap b -> a

O(n). Fold the keys and values in the map using the given left-associative
binary operator, such that foldlWithKey f z == foldl (\z’ (kx, x) -> f

z’ kx x) z . toAscList.

For example,

keys = reverse . foldlWithKey (\ks k x -> k:ks) []

let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"

foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)"

3.8.1 Strict folds

foldr’ :: (a -> b -> b) -> b -> IntMap a -> b

O(n). A strict version of foldr. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldl’ :: (a -> b -> a) -> a -> IntMap b -> a

O(n). A strict version of foldl. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldrWithKey’ :: (Int -> a -> b -> b) -> b -> IntMap a -> b

O(n). A strict version of foldrWithKey. Each application of the operator
is evaluated before using the result in the next application. This function
is strict in the starting value.

foldlWithKey’ :: (a -> Int -> b -> a) -> a -> IntMap b -> a

O(n). A strict version of foldlWithKey. Each application of the operator
is evaluated before using the result in the next application. This function
is strict in the starting value.

3.9 Conversion

elems :: IntMap a -> [a]

O(n). Return all elements of the map in the ascending order of their keys.
Subject to list fusion.

3.9. CONVERSION 51

elems (fromList [(5,"a"), (3,"b")]) == ["b","a"]

elems empty == []

keys :: IntMap a -> [Key]

O(n). Return all keys of the map in ascending order. Subject to list
fusion.

keys (fromList [(5,"a"), (3,"b")]) == [3,5]

keys empty == []

assocs :: IntMap a -> [(Key, a)]

O(n). An alias for toAscList. Returns all key/value pairs in the map in
ascending key order. Subject to list fusion.

assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

assocs empty == []

keysSet :: IntMap a -> IntSet

O(n*min(n,W)). The set of all keys of the map.

keysSet (fromList [(5,"a"), (3,"b")]) == Data.IntSet.fromList [3,5]

keysSet empty == Data.IntSet.empty

fromSet :: (Key -> a) -> IntSet -> IntMap a

O(n). Build a map from a set of keys and a function which for each key
computes its value.

fromSet (\k -> replicate k ’a’) (Data.IntSet.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")]

fromSet undefined Data.IntSet.empty == empty

3.9.1 Lists

toList :: IntMap a -> [(Key, a)]

O(n). Convert the map to a list of key/value pairs. Subject to list fusion.

toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toList empty == []

fromList :: [(Key, a)] -> IntMap a

O(n*min(n,W)). Create a map from a list of key/value pairs.

52 CHAPTER 3. DATA.INTMAP.STRICT

fromList [] == empty

fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]

fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

fromListWith :: (a -> a -> a) -> [(Key, a)] -> IntMap a

O(n*min(n,W)). Create a map from a list of key/value pairs with a com-
bining function. See also fromAscListWith.

fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]

fromListWith (++) [] == empty

fromListWithKey :: (Key -> a -> a -> a) -> [(Key, a)] -> IntMap a

O(n*min(n,W)). Build a map from a list of key/value pairs with a com-
bining function. See also fromAscListWithKey’.

fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]

fromListWith (++) [] == empty

3.9.2 Ordered lists

toAscList :: IntMap a -> [(Key, a)]

O(n). Convert the map to a list of key/value pairs where the keys are in
ascending order. Subject to list fusion.

toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toDescList :: IntMap a -> [(Key, a)]

O(n). Convert the map to a list of key/value pairs where the keys are in
descending order. Subject to list fusion.

toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")]

fromAscList :: [(Key, a)] -> IntMap a

O(n). Build a map from a list of key/value pairs where the keys are in
ascending order.

fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]

fromAscListWith :: (a -> a -> a) -> [(Key, a)] -> IntMap a

O(n). Build a map from a list of key/value pairs where the keys are in as-
cending order, with a combining function on equal keys. The precondition
(input list is ascending) is not checked.

3.10. FILTER 53

fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]

fromAscListWithKey :: (Key -> a -> a -> a)

-> [(Key, a)] -> IntMap a

O(n). Build a map from a list of key/value pairs where the keys are in as-
cending order, with a combining function on equal keys. The precondition
(input list is ascending) is not checked.

fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]

fromDistinctAscList :: [(Key, a)] -> IntMap a

O(n). Build a map from a list of key/value pairs where the keys are in
ascending order and all distinct. The precondition (input list is strictly
ascending) is not checked.

fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

3.10 Filter

filter :: (a -> Bool) -> IntMap a -> IntMap a

O(n). Filter all values that satisfy some predicate.

filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty

filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty

filterWithKey :: (Key -> a -> Bool) -> IntMap a -> IntMap a

O(n). Filter all keys/values that satisfy some predicate.

filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

partition :: (a -> Bool) -> IntMap a -> (IntMap a, IntMap a)

O(n). Partition the map according to some predicate. The first map
contains all elements that satisfy the predicate, the second all elements
that fail the predicate. See also split.

partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")

partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)

partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

54 CHAPTER 3. DATA.INTMAP.STRICT

partitionWithKey :: (Key -> a -> Bool)

-> IntMap a -> (IntMap a, IntMap a)

O(n). Partition the map according to some predicate. The first map
contains all elements that satisfy the predicate, the second all elements
that fail the predicate. See also split.

partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b")

partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)

partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b

O(n). Map values and collect the Just results.

let f x = if x == "a" then Just "new a" else Nothing

mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"

mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b

O(n). Map keys/values and collect the Just results.

let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing

mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"

mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)

O(n). Map values and separate the Left and Right results.

let f a = if a < "c" then Left a else Right a

mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")])

mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

mapEitherWithKey :: (Key -> a -> Either b c)

-> IntMap a -> (IntMap b, IntMap c)

O(n). Map keys/values and separate the Left and Right results.

let f k a = if k < 5 then Left (k * 2) else Right (a ++ a)

mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")])

mapEitherWithKey (_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])

3.11. SUBMAP 55

split :: Key -> IntMap a -> (IntMap a, IntMap a)

O(min(n,W)). The expression (split k map) is a pair (map1,map2) where
all keys in map1 are lower than k and all keys in map2 larger than k. Any
key equal to k is found in neither map1 nor map2.

split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")])

split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a")

split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")

split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty)

split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty)

splitLookup :: Key -> IntMap a -> (IntMap a, Maybe a, IntMap a)

O(min(n,W)). Performs a split but also returns whether the pivot key
was found in the original map.

splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")])

splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a")

splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a")

splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty)

splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty)

3.11 Submap

isSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool

O(n+m). Is this a submap? Defined as (isSubmapOf = isSubmapOfBy

(==)).

isSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool

O(n+m). The expression (isSubmapOfBy f m1 m2) returns True if all keys
in m1 are in m2, and when f returns True when applied to their respective
values. For example, the following expressions are all True:

isSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

But the following are all False:

isSubmapOfBy (==) (fromList [(1,2)]) (fromList [(1,1),(2,2)])

isSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])

56 CHAPTER 3. DATA.INTMAP.STRICT

isProperSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). Defined
as (isProperSubmapOf = isProperSubmapOfBy (==)).

isProperSubmapOfBy :: (a -> b -> Bool)

-> IntMap a -> IntMap b -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). The
expression (isProperSubmapOfBy f m1 m2) returns True when m1 and m2 are
not equal, all keys in m1 are in m2, and when f returns True when applied
to their respective values. For example, the following expressions are all
True:

isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

But the following are all False:

isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])

isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

3.12 Min/Max

findMin :: IntMap a -> (Key, a)

O(min(n,W)). The minimal key of the map.

findMax :: IntMap a -> (Key, a)

O(min(n,W)). The maximal key of the map.

deleteMin :: IntMap a -> IntMap a

O(min(n,W)). Delete the minimal key. An error is thrown if the IntMap
is already empty. Note, this is not the same behavior Map.

deleteMax :: IntMap a -> IntMap a

O(min(n,W)). Delete the maximal key. An error is thrown if the IntMap
is already empty. Note, this is not the same behavior Map.

deleteFindMin :: IntMap a -> ((Key, a), IntMap a)

O(min(n,W)). Delete and find the minimal element.

3.12. MIN/MAX 57

deleteFindMax :: IntMap a -> ((Key, a), IntMap a)

O(min(n,W)). Delete and find the maximal element.

updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a

O(log n). Update the value at the minimal key.

updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]

updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a

O(log n). Update the value at the maximal key.

updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]

updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a

O(log n). Update the value at the minimal key.

updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]

updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a

O(log n). Update the value at the maximal key.

updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]

updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

minView :: IntMap a -> Maybe (a, IntMap a)

O(min(n,W)). Retrieves the minimal key of the map, and the map stripped
of that element, or Nothing if passed an empty map.

maxView :: IntMap a -> Maybe (a, IntMap a)

O(min(n,W)). Retrieves the maximal key of the map, and the map stripped
of that element, or Nothing if passed an empty map.

minViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a)

O(min(n,W)). Retrieves the minimal (key,value) pair of the map, and the
map stripped of that element, or Nothing if passed an empty map.

minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a")

minViewWithKey empty == Nothing

58 CHAPTER 3. DATA.INTMAP.STRICT

maxViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a)

O(min(n,W)). Retrieves the maximal (key,value) pair of the map, and the
map stripped of that element, or Nothing if passed an empty map.

maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b")

maxViewWithKey empty == Nothing

3.13 Debugging

showTree :: Show a => IntMap a -> String

O(n). Show the tree that implements the map. The tree is shown in a
compressed, hanging format.

showTreeWith :: Show a => Bool -> Bool -> IntMap a -> String

O(n). The expression (showTreeWith hang wide map) shows the tree that
implements the map. If hang is True, a hanging tree is shown otherwise a
rotated tree is shown. If wide is True, an extra wide version is shown.

Chapter 4

Data.IntSet

module Data.IntSet (

IntSet, (\\), null, size, member, notMember, lookupLT, lookupGT,

lookupLE, lookupGE, isSubsetOf, isProperSubsetOf, empty, singleton,

insert, delete, union, unions, difference, intersection, filter,

partition, split, splitMember, map, foldr, foldl, foldr’, foldl’,

fold, findMin, findMax, deleteMin, deleteMax, deleteFindMin,

deleteFindMax, maxView, minView, elems, toList, fromList, toAscList,

toDescList, fromAscList, fromDistinctAscList, showTree, showTreeWith

) where

An efficient implementation of integer sets.

These modules are intended to be imported qualified, to avoid name clashes
with Prelude functions, e.g.

import Data.IntSet (IntSet)

import qualified Data.IntSet as IntSet

The implementation is based on big-endian patricia trees. This data struc-
ture performs especially well on binary operations like union and intersection.
However, my benchmarks show that it is also (much) faster on insertions and
deletions when compared to a generic size-balanced set implementation (see
Data.Set).

59

60 CHAPTER 4. DATA.INTSET

• Chris Okasaki and Andy Gill, ”Fast Mergeable Integer Maps”, Workshop
on ML, September 1998, pages 77-86, http://citeseer.ist.psu.edu/
okasaki98fast.html

• D.R. Morrison, ”/PATRICIA – Practical Algorithm To Retrieve Informa-
tion Coded In Alphanumeric/”, Journal of the ACM, 15(4), October 1968,
pages 514-534.

Additionally, this implementation places bitmaps in the leaves of the tree. Their
size is the natural size of a machine word (32 or 64 bits) and greatly reduce
memory footprint and execution times for dense sets, e.g. sets where it is likely
that many values lie close to each other. The asymptotics are not affected by
this optimization.

Many operations have a worst-case complexity of O(min(n,W)). This means that
the operation can become linear in the number of elements with a maximum of
W – the number of bits in an Int (32 or 64).

4.1 Strictness properties

This module satisfies the following strictness property:

• Key arguments are evaluated to WHNF

Here are some examples that illustrate the property:

delete undefined s == undefined

4.2 Set type

data IntSet

A set of integers.

instance Eq IntSet

instance Data IntSet

instance Ord IntSet

instance Read IntSet

instance Show IntSet

instance Typeable IntSet

instance NFData IntSet

instance Monoid IntSet

http://citeseer.ist.psu.edu/okasaki98fast.html
http://citeseer.ist.psu.edu/okasaki98fast.html

4.3. OPERATORS 61

4.3 Operators

(\\) :: IntSet -> IntSet -> IntSet

O(n+m). See difference.

4.4 Query

null :: IntSet -> Bool

O(1). Is the set empty?

size :: IntSet -> Int

O(n). Cardinality of the set.

member :: Int -> IntSet -> Bool

O(min(n,W)). Is the value a member of the set?

notMember :: Int -> IntSet -> Bool

O(min(n,W)). Is the element not in the set?

lookupLT :: Int -> IntSet -> Maybe Int

O(log n). Find largest element smaller than the given one.

lookupLT 3 (fromList [3, 5]) == Nothing

lookupLT 5 (fromList [3, 5]) == Just 3

lookupGT :: Int -> IntSet -> Maybe Int

O(log n). Find smallest element greater than the given one.

lookupGT 4 (fromList [3, 5]) == Just 5

lookupGT 5 (fromList [3, 5]) == Nothing

lookupLE :: Int -> IntSet -> Maybe Int

O(log n). Find largest element smaller or equal to the given one.

lookupLE 2 (fromList [3, 5]) == Nothing

lookupLE 4 (fromList [3, 5]) == Just 3

lookupLE 5 (fromList [3, 5]) == Just 5

62 CHAPTER 4. DATA.INTSET

lookupGE :: Int -> IntSet -> Maybe Int

O(log n). Find smallest element greater or equal to the given one.

lookupGE 3 (fromList [3, 5]) == Just 3

lookupGE 4 (fromList [3, 5]) == Just 5

lookupGE 6 (fromList [3, 5]) == Nothing

isSubsetOf :: IntSet -> IntSet -> Bool

O(n+m). Is this a subset? (s1 isSubsetOf s2) tells whether s1 is a subset
of s2.

isProperSubsetOf :: IntSet -> IntSet -> Bool

O(n+m). Is this a proper subset? (ie. a subset but not equal).

4.5 Construction

empty :: IntSet

O(1). The empty set.

singleton :: Int -> IntSet

O(1). A set of one element.

insert :: Int -> IntSet -> IntSet

O(min(n,W)). Add a value to the set. There is no left- or right bias for
IntSets.

delete :: Int -> IntSet -> IntSet

O(min(n,W)). Delete a value in the set. Returns the original set when the
value was not present.

4.6 Combine

union :: IntSet -> IntSet -> IntSet

O(n+m). The union of two sets.

unions :: [IntSet] -> IntSet

The union of a list of sets.

4.7. FILTER 63

difference :: IntSet -> IntSet -> IntSet

O(n+m). Difference between two sets.

intersection :: IntSet -> IntSet -> IntSet

O(n+m). The intersection of two sets.

4.7 Filter

filter :: (Int -> Bool) -> IntSet -> IntSet

O(n). Filter all elements that satisfy some predicate.

partition :: (Int -> Bool) -> IntSet -> (IntSet, IntSet)

O(n). partition the set according to some predicate.

split :: Int -> IntSet -> (IntSet, IntSet)

O(min(n,W)). The expression (split x set) is a pair (set1,set2) where
set1 comprises the elements of set less than x and set2 comprises the
elements of set greater than x.

split 3 (fromList [1..5]) == (fromList [1,2], fromList [4,5])

splitMember :: Int -> IntSet -> (IntSet, Bool, IntSet)

O(min(n,W)). Performs a split but also returns whether the pivot ele-
ment was found in the original set.

4.8 Map

map :: (Int -> Int) -> IntSet -> IntSet

O(n*min(n,W)). map f s is the set obtained by applying f to each element
of s.

It’s worth noting that the size of the result may be smaller if, for some
(x,y), x /= y && f x == f y

64 CHAPTER 4. DATA.INTSET

4.9 Folds

foldr :: (Int -> b -> b) -> b -> IntSet -> b

O(n). Fold the elements in the set using the given right-associative binary
operator, such that foldr f z == foldr f z . toAscList.

For example,

toAscList set = foldr (:) [] set

foldl :: (a -> Int -> a) -> a -> IntSet -> a

O(n). Fold the elements in the set using the given left-associative binary
operator, such that foldl f z == foldl f z . toAscList.

For example,

toDescList set = foldl (flip (:)) [] set

4.9.1 Strict folds

foldr’ :: (Int -> b -> b) -> b -> IntSet -> b

O(n). A strict version of foldr. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldl’ :: (a -> Int -> a) -> a -> IntSet -> a

O(n). A strict version of foldl. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

4.9.2 Legacy folds

fold :: (Int -> b -> b) -> b -> IntSet -> b

O(n). Fold the elements in the set using the given right-associative bi-
nary operator. This function is an equivalent of foldr and is present for
compatibility only.

Please note that fold will be deprecated in the future and removed.

4.10. MIN/MAX 65

4.10 Min/Max

findMin :: IntSet -> Int

O(min(n,W)). The minimal element of the set.

findMax :: IntSet -> Int

O(min(n,W)). The maximal element of a set.

deleteMin :: IntSet -> IntSet

O(min(n,W)). Delete the minimal element.

deleteMax :: IntSet -> IntSet

O(min(n,W)). Delete the maximal element.

deleteFindMin :: IntSet -> (Int, IntSet)

O(min(n,W)). Delete and find the minimal element.

deleteFindMin set = (findMin set, deleteMin set)

deleteFindMax :: IntSet -> (Int, IntSet)

O(min(n,W)). Delete and find the maximal element.

deleteFindMax set = (findMax set, deleteMax set)

maxView :: IntSet -> Maybe (Int, IntSet)

O(min(n,W)). Retrieves the maximal key of the set, and the set stripped
of that element, or Nothing if passed an empty set.

minView :: IntSet -> Maybe (Int, IntSet)

O(min(n,W)). Retrieves the minimal key of the set, and the set stripped
of that element, or Nothing if passed an empty set.

4.11 Conversion

4.11.1 List

elems :: IntSet -> [Int]

O(n). An alias of toAscList. The elements of a set in ascending order.
Subject to list fusion.

66 CHAPTER 4. DATA.INTSET

toList :: IntSet -> [Int]

O(n). Convert the set to a list of elements. Subject to list fusion.

fromList :: [Int] -> IntSet

O(n*min(n,W)). Create a set from a list of integers.

4.11.2 Ordered list

toAscList :: IntSet -> [Int]

O(n). Convert the set to an ascending list of elements. Subject to list
fusion.

toDescList :: IntSet -> [Int]

O(n). Convert the set to a descending list of elements. Subject to list
fusion.

fromAscList :: [Int] -> IntSet

O(n). Build a set from an ascending list of elements. The precondition
(input list is ascending) is not checked.

fromDistinctAscList :: [Int] -> IntSet

O(n). Build a set from an ascending list of distinct elements. The precon-
dition (input list is strictly ascending) is not checked.

4.12 Debugging

showTree :: IntSet -> String

O(n). Show the tree that implements the set. The tree is shown in a
compressed, hanging format.

showTreeWith :: Bool -> Bool -> IntSet -> String

O(n). The expression (showTreeWith hang wide map) shows the tree that
implements the set. If hang is True, a hanging tree is shown otherwise a
rotated tree is shown. If wide is True, an extra wide version is shown.

Chapter 5

Data.IntSet.Base

module Data.IntSet.Base (

IntSet(Bin, Tip, Nil), (\\), null, size, member, notMember, lookupLT,

lookupGT, lookupLE, lookupGE, isSubsetOf, isProperSubsetOf, empty,

singleton, insert, delete, union, unions, difference, intersection,

filter, partition, split, splitMember, map, foldr, foldl, foldr’,

foldl’, fold, findMin, findMax, deleteMin, deleteMax, deleteFindMin,

deleteFindMax, maxView, minView, elems, toList, fromList, toAscList,

toDescList, fromAscList, fromDistinctAscList, showTree, showTreeWith,

match, suffixBitMask, prefixBitMask, bitmapOf

) where

An efficient implementation of integer sets.

These modules are intended to be imported qualified, to avoid name clashes
with Prelude functions, e.g.

import Data.IntSet (IntSet)

import qualified Data.IntSet as IntSet

The implementation is based on big-endian patricia trees. This data struc-
ture performs especially well on binary operations like union and intersection.
However, my benchmarks show that it is also (much) faster on insertions and
deletions when compared to a generic size-balanced set implementation (see
Data.Set).

67

68 CHAPTER 5. DATA.INTSET.BASE

• Chris Okasaki and Andy Gill, ”Fast Mergeable Integer Maps”, Workshop
on ML, September 1998, pages 77-86, http://citeseer.ist.psu.edu/
okasaki98fast.html

• D.R. Morrison, ”/PATRICIA – Practical Algorithm To Retrieve Informa-
tion Coded In Alphanumeric/”, Journal of the ACM, 15(4), October 1968,
pages 514-534.

Additionally, this implementation places bitmaps in the leaves of the tree. Their
size is the natural size of a machine word (32 or 64 bits) and greatly reduce
memory footprint and execution times for dense sets, e.g. sets where it is likely
that many values lie close to each other. The asymptotics are not affected by
this optimization.

Many operations have a worst-case complexity of O(min(n,W)). This means that
the operation can become linear in the number of elements with a maximum of
W – the number of bits in an Int (32 or 64).

5.1 Set type

data IntSet

= Bin !Prefix !Mask !IntSet !IntSet

| Tip !Prefix !BitMap

| Nil

A set of integers.

instance Eq IntSet

instance Data IntSet

instance Ord IntSet

instance Read IntSet

instance Show IntSet

instance Typeable IntSet

instance NFData IntSet

instance Monoid IntSet

5.2 Operators

(\\) :: IntSet -> IntSet -> IntSet

O(n+m). See difference.

http://citeseer.ist.psu.edu/okasaki98fast.html
http://citeseer.ist.psu.edu/okasaki98fast.html

5.3. QUERY 69

5.3 Query

null :: IntSet -> Bool

O(1). Is the set empty?

size :: IntSet -> Int

O(n). Cardinality of the set.

member :: Int -> IntSet -> Bool

O(min(n,W)). Is the value a member of the set?

notMember :: Int -> IntSet -> Bool

O(min(n,W)). Is the element not in the set?

lookupLT :: Int -> IntSet -> Maybe Int

O(log n). Find largest element smaller than the given one.

lookupLT 3 (fromList [3, 5]) == Nothing

lookupLT 5 (fromList [3, 5]) == Just 3

lookupGT :: Int -> IntSet -> Maybe Int

O(log n). Find smallest element greater than the given one.

lookupGT 4 (fromList [3, 5]) == Just 5

lookupGT 5 (fromList [3, 5]) == Nothing

lookupLE :: Int -> IntSet -> Maybe Int

O(log n). Find largest element smaller or equal to the given one.

lookupLE 2 (fromList [3, 5]) == Nothing

lookupLE 4 (fromList [3, 5]) == Just 3

lookupLE 5 (fromList [3, 5]) == Just 5

lookupGE :: Int -> IntSet -> Maybe Int

O(log n). Find smallest element greater or equal to the given one.

lookupGE 3 (fromList [3, 5]) == Just 3

lookupGE 4 (fromList [3, 5]) == Just 5

lookupGE 6 (fromList [3, 5]) == Nothing

70 CHAPTER 5. DATA.INTSET.BASE

isSubsetOf :: IntSet -> IntSet -> Bool

O(n+m). Is this a subset? (s1 isSubsetOf s2) tells whether s1 is a subset
of s2.

isProperSubsetOf :: IntSet -> IntSet -> Bool

O(n+m). Is this a proper subset? (ie. a subset but not equal).

5.4 Construction

empty :: IntSet

O(1). The empty set.

singleton :: Int -> IntSet

O(1). A set of one element.

insert :: Int -> IntSet -> IntSet

O(min(n,W)). Add a value to the set. There is no left- or right bias for
IntSets.

delete :: Int -> IntSet -> IntSet

O(min(n,W)). Delete a value in the set. Returns the original set when the
value was not present.

5.5 Combine

union :: IntSet -> IntSet -> IntSet

O(n+m). The union of two sets.

unions :: [IntSet] -> IntSet

The union of a list of sets.

difference :: IntSet -> IntSet -> IntSet

O(n+m). Difference between two sets.

intersection :: IntSet -> IntSet -> IntSet

O(n+m). The intersection of two sets.

5.6. FILTER 71

5.6 Filter

filter :: (Int -> Bool) -> IntSet -> IntSet

O(n). Filter all elements that satisfy some predicate.

partition :: (Int -> Bool) -> IntSet -> (IntSet, IntSet)

O(n). partition the set according to some predicate.

split :: Int -> IntSet -> (IntSet, IntSet)

O(min(n,W)). The expression (split x set) is a pair (set1,set2) where
set1 comprises the elements of set less than x and set2 comprises the
elements of set greater than x.

split 3 (fromList [1..5]) == (fromList [1,2], fromList [4,5])

splitMember :: Int -> IntSet -> (IntSet, Bool, IntSet)

O(min(n,W)). Performs a split but also returns whether the pivot ele-
ment was found in the original set.

5.7 Map

map :: (Int -> Int) -> IntSet -> IntSet

O(n*min(n,W)). map f s is the set obtained by applying f to each element
of s.

It’s worth noting that the size of the result may be smaller if, for some
(x,y), x /= y && f x == f y

5.8 Folds

foldr :: (Int -> b -> b) -> b -> IntSet -> b

O(n). Fold the elements in the set using the given right-associative binary
operator, such that foldr f z == foldr f z . toAscList.

For example,

toAscList set = foldr (:) [] set

72 CHAPTER 5. DATA.INTSET.BASE

foldl :: (a -> Int -> a) -> a -> IntSet -> a

O(n). Fold the elements in the set using the given left-associative binary
operator, such that foldl f z == foldl f z . toAscList.

For example,

toDescList set = foldl (flip (:)) [] set

5.8.1 Strict folds

foldr’ :: (Int -> b -> b) -> b -> IntSet -> b

O(n). A strict version of foldr. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldl’ :: (a -> Int -> a) -> a -> IntSet -> a

O(n). A strict version of foldl. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

5.8.2 Legacy folds

fold :: (Int -> b -> b) -> b -> IntSet -> b

O(n). Fold the elements in the set using the given right-associative bi-
nary operator. This function is an equivalent of foldr and is present for
compatibility only.

Please note that fold will be deprecated in the future and removed.

5.9 Min/Max

findMin :: IntSet -> Int

O(min(n,W)). The minimal element of the set.

findMax :: IntSet -> Int

O(min(n,W)). The maximal element of a set.

deleteMin :: IntSet -> IntSet

O(min(n,W)). Delete the minimal element.

5.10. CONVERSION 73

deleteMax :: IntSet -> IntSet

O(min(n,W)). Delete the maximal element.

deleteFindMin :: IntSet -> (Int, IntSet)

O(min(n,W)). Delete and find the minimal element.

deleteFindMin set = (findMin set, deleteMin set)

deleteFindMax :: IntSet -> (Int, IntSet)

O(min(n,W)). Delete and find the maximal element.

deleteFindMax set = (findMax set, deleteMax set)

maxView :: IntSet -> Maybe (Int, IntSet)

O(min(n,W)). Retrieves the maximal key of the set, and the set stripped
of that element, or Nothing if passed an empty set.

minView :: IntSet -> Maybe (Int, IntSet)

O(min(n,W)). Retrieves the minimal key of the set, and the set stripped
of that element, or Nothing if passed an empty set.

5.10 Conversion

5.10.1 List

elems :: IntSet -> [Int]

O(n). An alias of toAscList. The elements of a set in ascending order.
Subject to list fusion.

toList :: IntSet -> [Int]

O(n). Convert the set to a list of elements. Subject to list fusion.

fromList :: [Int] -> IntSet

O(n*min(n,W)). Create a set from a list of integers.

74 CHAPTER 5. DATA.INTSET.BASE

5.10.2 Ordered list

toAscList :: IntSet -> [Int]

O(n). Convert the set to an ascending list of elements. Subject to list
fusion.

toDescList :: IntSet -> [Int]

O(n). Convert the set to a descending list of elements. Subject to list
fusion.

fromAscList :: [Int] -> IntSet

O(n). Build a set from an ascending list of elements. The precondition
(input list is ascending) is not checked.

fromDistinctAscList :: [Int] -> IntSet

O(n). Build a set from an ascending list of distinct elements. The precon-
dition (input list is strictly ascending) is not checked.

5.11 Debugging

showTree :: IntSet -> String

O(n). Show the tree that implements the set. The tree is shown in a
compressed, hanging format.

showTreeWith :: Bool -> Bool -> IntSet -> String

O(n). The expression (showTreeWith hang wide map) shows the tree that
implements the set. If hang is True, a hanging tree is shown otherwise a
rotated tree is shown. If wide is True, an extra wide version is shown.

5.12 Internals

match :: Int -> Prefix -> Mask -> Bool

suffixBitMask :: Int

prefixBitMask :: Int

bitmapOf :: Int -> BitMap

Chapter 6

Data.Map.Base

module Data.Map.Base (

Map(Bin, Tip), (!), (\\), null, size, member, notMember, lookup,

findWithDefault, lookupLT, lookupGT, lookupLE, lookupGE, empty,

singleton, insert, insertWith, insertWithKey, insertLookupWithKey,

delete, adjust, adjustWithKey, update, updateWithKey,

updateLookupWithKey, alter, union, unionWith, unionWithKey, unions,

unionsWith, difference, differenceWith, differenceWithKey,

intersection, intersectionWith, intersectionWithKey, mergeWithKey, map,

mapWithKey, traverseWithKey, mapAccum, mapAccumWithKey,

mapAccumRWithKey, mapKeys, mapKeysWith, mapKeysMonotonic, foldr,

foldl, foldrWithKey, foldlWithKey, foldr’, foldl’, foldrWithKey’,

foldlWithKey’, elems, keys, assocs, keysSet, fromSet, toList,

fromList, fromListWith, fromListWithKey, toAscList, toDescList,

fromAscList, fromAscListWith, fromAscListWithKey, fromDistinctAscList,

filter, filterWithKey, partition, partitionWithKey, mapMaybe,

mapMaybeWithKey, mapEither, mapEitherWithKey, split, splitLookup,

isSubmapOf, isSubmapOfBy, isProperSubmapOf, isProperSubmapOfBy,

lookupIndex, findIndex, elemAt, updateAt, deleteAt, findMin, findMax,

deleteMin, deleteMax, deleteFindMin, deleteFindMax, updateMin,

updateMax, updateMinWithKey, updateMaxWithKey, minView, maxView,

minViewWithKey, maxViewWithKey, showTree, showTreeWith, valid, bin,

balance, balanced, balanceL, balanceR, delta, join, merge, glue,

trim, trimLookupLo, foldlStrict, MaybeS(NothingS, JustS), filterGt,

filterLt

) where

An efficient implementation of maps from keys to values (dictionaries).

75

76 CHAPTER 6. DATA.MAP.BASE

Since many function names (but not the type name) clash with Prelude names,
this module is usually imported qualified, e.g.

import Data.Map (Map)

import qualified Data.Map as Map

The implementation of Map is based on size balanced binary trees (or trees of
bounded balance) as described by:

• Stephen Adams, ”Efficient sets: a balancing act”, Journal of Functional
Programming 3(4):553-562, October 1993, http://www.swiss.ai.mit.

edu/~adams/BB/.

• J. Nievergelt and E.M. Reingold, ”Binary search trees of bounded balance”,
SIAM journal of computing 2(1), March 1973.

Note that the implementation is left-biased – the elements of a first argument
are always preferred to the second, for example in union or insert.

Operation comments contain the operation time complexity in the Big-O nota-
tion http://en.wikipedia.org/wiki/Big_O_notation.

6.1 Map type

data Map k a

= Bin !Size !k a !(Map k a) !(Map k a)

| Tip

A Map from keys k to values a.

instance Typeable2 Map

instance Functor (Map k)

instance Foldable (Map k)

instance Traversable (Map k)

instance (Eq k, Eq a) => Eq (Map k a)

instance (Data k, Data a, Ord k) => Data (Map k a)

instance (Ord k, Ord v) => Ord (Map k v)

instance (Ord k, Read k, Read e) => Read (Map k e)

instance (Show k, Show a) => Show (Map k a)

instance (NFData k, NFData a) => NFData (Map k a)

instance Ord k => Monoid (Map k v)

http://www.swiss.ai.mit.edu/~adams/BB/
http://www.swiss.ai.mit.edu/~adams/BB/
http://en.wikipedia.org/wiki/Big_O_notation

6.2. OPERATORS 77

6.2 Operators

(!) :: Ord k => Map k a -> k -> a

O(log n). Find the value at a key. Calls error when the element can not
be found.

fromList [(5,’a’), (3,’b’)] ! 1 Error: element not in the map

fromList [(5,’a’), (3,’b’)] ! 5 == ’a’

(\\) :: Ord k => Map k a -> Map k b -> Map k a

Same as difference.

6.3 Query

null :: Map k a -> Bool

O(1). Is the map empty?

Data.Map.null (empty) == True

Data.Map.null (singleton 1 ’a’) == False

size :: Map k a -> Int

O(1). The number of elements in the map.

size empty == 0

size (singleton 1 ’a’) == 1

size (fromList([(1,’a’), (2,’c’), (3,’b’)])) == 3

member :: Ord k => k -> Map k a -> Bool

O(log n). Is the key a member of the map? See also notMember.

member 5 (fromList [(5,’a’), (3,’b’)]) == True

member 1 (fromList [(5,’a’), (3,’b’)]) == False

notMember :: Ord k => k -> Map k a -> Bool

O(log n). Is the key not a member of the map? See also member.

notMember 5 (fromList [(5,’a’), (3,’b’)]) == False

notMember 1 (fromList [(5,’a’), (3,’b’)]) == True

78 CHAPTER 6. DATA.MAP.BASE

lookup :: Ord k => k -> Map k a -> Maybe a

O(log n). Lookup the value at a key in the map.

The function will return the corresponding value as (Just value), or
Nothing if the key isn’t in the map.

An example of using lookup:

import Prelude hiding (lookup)

import Data.Map

employeeDept = fromList([("John","Sales"), ("Bob","IT")])

deptCountry = fromList([("IT","USA"), ("Sales","France")])

countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])

employeeCurrency :: String -> Maybe String

employeeCurrency name = do

dept <- lookup name employeeDept

country <- lookup dept deptCountry

lookup country countryCurrency

main = do

putStrLn $ "John’s currency: " ++ (show (employeeCurrency "John"))

putStrLn $ "Pete’s currency: " ++ (show (employeeCurrency "Pete"))

The output of this program:

John’s currency: Just "Euro"

Pete’s currency: Nothing

findWithDefault :: Ord k => a -> k -> Map k a -> a

O(log n). The expression (findWithDefault def k map) returns the value
at key k or returns default value def when the key is not in the map.

findWithDefault ’x’ 1 (fromList [(5,’a’), (3,’b’)]) == ’x’

findWithDefault ’x’ 5 (fromList [(5,’a’), (3,’b’)]) == ’a’

lookupLT :: Ord k => k -> Map k v -> Maybe (k, v)

O(log n). Find largest key smaller than the given one and return the
corresponding (key, value) pair.

lookupLT 3 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLT 4 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupGT :: Ord k => k -> Map k v -> Maybe (k, v)

O(log n). Find smallest key greater than the given one and return the
corresponding (key, value) pair.

6.4. CONSTRUCTION 79

lookupGT 4 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGT 5 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLE :: Ord k => k -> Map k v -> Maybe (k, v)

O(log n). Find largest key smaller or equal to the given one and return
the corresponding (key, value) pair.

lookupLE 2 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLE 4 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupLE 5 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGE :: Ord k => k -> Map k v -> Maybe (k, v)

O(log n). Find smallest key greater or equal to the given one and return
the corresponding (key, value) pair.

lookupGE 3 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupGE 4 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGE 6 (fromList [(3,’a’), (5,’b’)]) == Nothing

6.4 Construction

empty :: Map k a

O(1). The empty map.

empty == fromList []

size empty == 0

singleton :: k -> a -> Map k a

O(1). A map with a single element.

singleton 1 ’a’ == fromList [(1, ’a’)]

size (singleton 1 ’a’) == 1

6.4.1 Insertion

insert :: Ord k => k -> a -> Map k a -> Map k a

O(log n). Insert a new key and value in the map. If the key is already
present in the map, the associated value is replaced with the supplied
value. insert is equivalent to insertWith const.

80 CHAPTER 6. DATA.MAP.BASE

insert 5 ’x’ (fromList [(5,’a’), (3,’b’)]) == fromList [(3, ’b’), (5, ’x’)]

insert 7 ’x’ (fromList [(5,’a’), (3,’b’)]) == fromList [(3, ’b’), (5, ’a’), (7, ’x’)]

insert 5 ’x’ empty == singleton 5 ’x’

insertWith :: Ord k => (a -> a -> a)

-> k -> a -> Map k a -> Map k a

O(log n). Insert with a function, combining new value and old value.
insertWith f key value mp will insert the pair (key, value) into mp if key
does not exist in the map. If the key does exist, the function will insert
the pair (key, f new_value old_value).

insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]

insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]

insertWith (++) 5 "xxx" empty == singleton 5 "xxx"

insertWithKey :: Ord k => (k -> a -> a -> a)

-> k -> a -> Map k a -> Map k a

O(log n). Insert with a function, combining key, new value and old value.
insertWithKey f key value mp will insert the pair (key, value) into mp if
key does not exist in the map. If the key does exist, the function will insert
the pair (key,f key new_value old_value). Note that the key passed to f
is the same key passed to insertWithKey.

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]

insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]

insertWithKey f 5 "xxx" empty == singleton 5 "xxx"

insertLookupWithKey :: Ord k => (k -> a -> a -> a)

-> k -> a -> Map k a -> (Maybe a, Map k a)

O(log n). Combines insert operation with old value retrieval. The expres-
sion (insertLookupWithKey f k x map) is a pair where the first element is
equal to (lookup k map) and the second element equal to (insertWithKey
f k x map).

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])

insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")])

insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx")

This is how to define insertLookup using insertLookupWithKey:

let insertLookup kx x t = insertLookupWithKey (_ a _ -> a) kx x t

insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])

insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")])

6.4. CONSTRUCTION 81

6.4.2 Delete/Update

delete :: Ord k => k -> Map k a -> Map k a

O(log n). Delete a key and its value from the map. When the key is not
a member of the map, the original map is returned.

delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

delete 5 empty == empty

adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a

O(log n). Update a value at a specific key with the result of the provided
function. When the key is not a member of the map, the original map is
returned.

adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]

adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

adjust ("new " ++) 7 empty == empty

adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a

O(log n). Adjust a value at a specific key. When the key is not a member
of the map, the original map is returned.

let f key x = (show key) ++ ":new " ++ x

adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]

adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

adjustWithKey f 7 empty == empty

update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a

O(log n). The expression (update f k map) updates the value x at k (if it
is in the map). If (f x) is Nothing, the element is deleted. If it is (Just y),
the key k is bound to the new value y.

let f x = if x == "a" then Just "new a" else Nothing

update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]

update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateWithKey :: Ord k => (k -> a -> Maybe a)

-> k -> Map k a -> Map k a

O(log n). The expression (updateWithKey f k map) updates the value x at
k (if it is in the map). If (f k x) is Nothing, the element is deleted. If it is
(Just y), the key k is bound to the new value y.

82 CHAPTER 6. DATA.MAP.BASE

let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing

updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]

updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateLookupWithKey :: Ord k => (k -> a -> Maybe a)

-> k -> Map k a -> (Maybe a, Map k a)

O(log n). Lookup and update. See also updateWithKey. The function
returns changed value, if it is updated. Returns the original key value if
the map entry is deleted.

let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing

updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "5:new a", fromList [(3, "b"), (5, "5:new a")])

updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")])

updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a

O(log n). The expression (alter f k map) alters the value x at k, or ab-
sence thereof. alter can be used to insert, delete, or update a value in a
Map. In short : lookup k (alter f k m) = f (lookup k m).

let f _ = Nothing

alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

alter f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

let f _ = Just "c"

alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "c")]

alter f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "c")]

6.5 Combine

6.5.1 Union

union :: Ord k => Map k a -> Map k a -> Map k a

O(n+m). The expression (union t1 t2) takes the left-biased union of t1

and t2. It prefers t1 when duplicate keys are encountered, i.e. (union
== unionWith const). The implementation uses the efficient hedge-union
algorithm. Hedge-union is more efficient on (bigset ‘union‘ smallset).

union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

unionWith :: Ord k => (a -> a -> a)

-> Map k a -> Map k a -> Map k a

O(n+m). Union with a combining function. The implementation uses the
efficient hedge-union algorithm.

6.5. COMBINE 83

unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

unionWithKey :: Ord k => (k -> a -> a -> a)

-> Map k a -> Map k a -> Map k a

O(n+m). Union with a combining function. The implementation uses the
efficient hedge-union algorithm. Hedge-union is more efficient on (bigset
‘union‘ smallset).

let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value

unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]

unions :: Ord k => [Map k a] -> Map k a

The union of a list of maps: (unions == foldl union empty).

unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]

== fromList [(3, "b"), (5, "a"), (7, "C")]

unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]

== fromList [(3, "B3"), (5, "A3"), (7, "C")]

unionsWith :: Ord k => (a -> a -> a) -> [Map k a] -> Map k a

The union of a list of maps, with a combining operation: (unionsWith f

== foldl (unionWith f) empty).

unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]

== fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

6.5.2 Difference

difference :: Ord k => Map k a -> Map k b -> Map k a

O(n+m). Difference of two maps. Return elements of the first map not
existing in the second map. The implementation uses an efficient hedge
algorithm comparable with hedge-union.

difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

differenceWith :: Ord k => (a -> b -> Maybe a)

-> Map k a -> Map k b -> Map k a

O(n+m). Difference with a combining function. When two equal keys are
encountered, the combining function is applied to the values of these keys.
If it returns Nothing, the element is discarded (proper set difference). If
it returns (Just y), the element is updated with a new value y. The
implementation uses an efficient hedge algorithm comparable with hedge-
union.

84 CHAPTER 6. DATA.MAP.BASE

let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing

differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])

== singleton 3 "b:B"

differenceWithKey :: Ord k => (k -> a -> b -> Maybe a)

-> Map k a -> Map k b -> Map k a

O(n+m). Difference with a combining function. When two equal keys are
encountered, the combining function is applied to the key and both values.
If it returns Nothing, the element is discarded (proper set difference). If
it returns (Just y), the element is updated with a new value y. The
implementation uses an efficient hedge algorithm comparable with hedge-
union.

let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing

differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])

== singleton 3 "3:b|B"

6.5.3 Intersection

intersection :: Ord k => Map k a -> Map k b -> Map k a

O(n+m). Intersection of two maps. Return data in the first map for
the keys existing in both maps. (intersection m1 m2 == intersectionWith

const m1 m2).

intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

intersectionWith :: Ord k => (a -> b -> c)

-> Map k a -> Map k b -> Map k c

O(n+m). Intersection with a combining function.

intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWithKey :: Ord k => (k -> a -> b -> c)

-> Map k a -> Map k b -> Map k c

O(n+m). Intersection with a combining function. Intersection is more
efficient on (bigset ‘intersection‘ smallset).

let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar

intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

6.6. TRAVERSAL 85

6.5.4 Universal combining function

mergeWithKey :: Ord k => (k -> a -> b -> Maybe c)

-> (Map k a -> Map k c)

-> (Map k b -> Map k c) -> Map k a -> Map k b -> Map k c

O(n+m). A high-performance universal combining function. This func-
tion is used to define unionWith, unionWithKey, differenceWith, differenceWithKey,
intersectionWith, intersectionWithKey and can be used to define other
custom combine functions.

Please make sure you know what is going on when using mergeWithKey,
otherwise you can be surprised by unexpected code growth or even cor-
ruption of the data structure.

When mergeWithKey is given three arguments, it is inlined to the call
site. You should therefore use mergeWithKey only to define your cus-
tom combining functions. For example, you could define unionWithKey,
differenceWithKey and intersectionWithKey as

myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2

myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2

myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2

When calling mergeWithKey combine only1 only2, a function combining
two IntMaps is created, such that

• if a key is present in both maps, it is passed with both corresponding
values to the combine function. Depending on the result, the key is
either present in the result with specified value, or is left out;

• a nonempty subtree present only in the first map is passed to only1

and the output is added to the result;

• a nonempty subtree present only in the second map is passed to only2

and the output is added to the result.

The only1 and only2 methods must return a map with a subset (possibly
empty) of the keys of the given map. The values can be modified arbitrar-
ily. Most common variants of only1 and only2 are id and const empty,
but for example map f or filterWithKey f could be used for any f.

6.6 Traversal

6.6.1 Map

map :: (a -> b) -> Map k a -> Map k b

O(n). Map a function over all values in the map.

86 CHAPTER 6. DATA.MAP.BASE

map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]

mapWithKey :: (k -> a -> b) -> Map k a -> Map k b

O(n). Map a function over all values in the map.

let f key x = (show key) ++ ":" ++ x

mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]

traverseWithKey :: Applicative t => (k -> a -> t b)

-> Map k a -> t (Map k b)

O(n). traverseWithKey f s == fromList $ traverse ((k, v) -> (,) k $

f k v) (toList m) That is, behaves exactly like a regular traverse except
that the traversing function also has access to the key associated with a
value.

traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, ’a’), (5, ’e’)]) == Just (fromList [(1, ’b’), (5, ’f’)])

traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, ’c’)]) == Nothing

mapAccum :: (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)

O(n). The function mapAccum threads an accumulating argument through
the map in ascending order of keys.

let f a b = (a ++ b, b ++ "X")

mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])

mapAccumWithKey :: (a -> k -> b -> (a, c))

-> a -> Map k b -> (a, Map k c)

O(n). The function mapAccumWithKey threads an accumulating argument
through the map in ascending order of keys.

let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X")

mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])

mapAccumRWithKey :: (a -> k -> b -> (a, c))

-> a -> Map k b -> (a, Map k c)

O(n). The function mapAccumR threads an accumulating argument through
the map in descending order of keys.

mapKeys :: Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a

O(n*log n). mapKeys f s is the map obtained by applying f to each key of
s.

The size of the result may be smaller if f maps two or more distinct keys
to the same new key. In this case the value at the greatest of the original
keys is retained.

$
$

6.7. FOLDS 87

mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")]

mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c"

mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"

mapKeysWith :: Ord k2 => (a -> a -> a)

-> (k1 -> k2) -> Map k1 a -> Map k2 a

O(n*log n). mapKeysWith c f s is the map obtained by applying f to each
key of s.

The size of the result may be smaller if f maps two or more distinct keys
to the same new key. In this case the associated values will be combined
using c.

mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab"

mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"

mapKeysMonotonic :: (k1 -> k2) -> Map k1 a -> Map k2 a

O(n). mapKeysMonotonic f s == mapKeys f s, but works only when f is
strictly monotonic. That is, for any values x and y, if x ¡ y then f x ¡ f y.
The precondition is not checked. Semi-formally, we have:

and [x < y ==> f x < f y | x <- ls, y <- ls]

==> mapKeysMonotonic f s == mapKeys f s

where ls = keys s

This means that f maps distinct original keys to distinct resulting keys.
This function has better performance than mapKeys.

mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")]

valid (mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")])) == True

valid (mapKeysMonotonic (\ _ -> 1) (fromList [(5,"a"), (3,"b")])) == False

6.7 Folds

foldr :: (a -> b -> b) -> b -> Map k a -> b

O(n). Fold the values in the map using the given right-associative binary
operator, such that foldr f z == foldr f z . elems.

For example,

elems map = foldr (:) [] map

let f a len = len + (length a)

foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4

88 CHAPTER 6. DATA.MAP.BASE

foldl :: (a -> b -> a) -> a -> Map k b -> a

O(n). Fold the values in the map using the given left-associative binary
operator, such that foldl f z == foldl f z . elems.

For example,

elems = reverse . foldl (flip (:)) []

let f len a = len + (length a)

foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4

foldrWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b

O(n). Fold the keys and values in the map using the given right-associative
binary operator, such that foldrWithKey f z == foldr (uncurry f) z .

toAscList.

For example,

keys map = foldrWithKey (\k x ks -> k:ks) [] map

let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"

foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)"

foldlWithKey :: (a -> k -> b -> a) -> a -> Map k b -> a

O(n). Fold the keys and values in the map using the given left-associative
binary operator, such that foldlWithKey f z == foldl (\z’ (kx, x) -> f

z’ kx x) z . toAscList.

For example,

keys = reverse . foldlWithKey (\ks k x -> k:ks) []

let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"

foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)"

6.7.1 Strict folds

foldr’ :: (a -> b -> b) -> b -> Map k a -> b

O(n). A strict version of foldr. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldl’ :: (a -> b -> a) -> a -> Map k b -> a

O(n). A strict version of foldl. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

6.8. CONVERSION 89

foldrWithKey’ :: (k -> a -> b -> b) -> b -> Map k a -> b

O(n). A strict version of foldrWithKey. Each application of the operator
is evaluated before using the result in the next application. This function
is strict in the starting value.

foldlWithKey’ :: (a -> k -> b -> a) -> a -> Map k b -> a

O(n). A strict version of foldlWithKey. Each application of the operator
is evaluated before using the result in the next application. This function
is strict in the starting value.

6.8 Conversion

elems :: Map k a -> [a]

O(n). Return all elements of the map in the ascending order of their keys.
Subject to list fusion.

elems (fromList [(5,"a"), (3,"b")]) == ["b","a"]

elems empty == []

keys :: Map k a -> [k]

O(n). Return all keys of the map in ascending order. Subject to list
fusion.

keys (fromList [(5,"a"), (3,"b")]) == [3,5]

keys empty == []

assocs :: Map k a -> [(k, a)]

O(n). An alias for toAscList. Return all key/value pairs in the map in
ascending key order. Subject to list fusion.

assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

assocs empty == []

keysSet :: Map k a -> Set k

O(n). The set of all keys of the map.

keysSet (fromList [(5,"a"), (3,"b")]) == Data.Set.fromList [3,5]

keysSet empty == Data.Set.empty

fromSet :: (k -> a) -> Set k -> Map k a

O(n). Build a map from a set of keys and a function which for each key
computes its value.

90 CHAPTER 6. DATA.MAP.BASE

fromSet (\k -> replicate k ’a’) (Data.Set.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")]

fromSet undefined Data.Set.empty == empty

6.8.1 Lists

toList :: Map k a -> [(k, a)]

O(n). Convert the map to a list of key/value pairs. Subject to list fusion.

toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toList empty == []

fromList :: Ord k => [(k, a)] -> Map k a

O(n*log n). Build a map from a list of key/value pairs. See also fromAscList.
If the list contains more than one value for the same key, the last value
for the key is retained.

fromList [] == empty

fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]

fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

fromListWith :: Ord k => (a -> a -> a) -> [(k, a)] -> Map k a

O(n*log n). Build a map from a list of key/value pairs with a combining
function. See also fromAscListWith.

fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]

fromListWith (++) [] == empty

fromListWithKey :: Ord k => (k -> a -> a -> a)

-> [(k, a)] -> Map k a

O(n*log n). Build a map from a list of key/value pairs with a combining
function. See also fromAscListWithKey.

let f k a1 a2 = (show k) ++ a1 ++ a2

fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "3ab"), (5, "5a5ba")]

fromListWithKey f [] == empty

6.8.2 Ordered lists

toAscList :: Map k a -> [(k, a)]

O(n). Convert the map to a list of key/value pairs where the keys are in
ascending order. Subject to list fusion.

6.8. CONVERSION 91

toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toDescList :: Map k a -> [(k, a)]

O(n). Convert the map to a list of key/value pairs where the keys are in
descending order. Subject to list fusion.

toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")]

fromAscList :: Eq k => [(k, a)] -> Map k a

O(n). Build a map from an ascending list in linear time. The precondition
(input list is ascending) is not checked.

fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]

valid (fromAscList [(3,"b"), (5,"a"), (5,"b")]) == True

valid (fromAscList [(5,"a"), (3,"b"), (5,"b")]) == False

fromAscListWith :: Eq k => (a -> a -> a) -> [(k, a)] -> Map k a

O(n). Build a map from an ascending list in linear time with a combining
function for equal keys. The precondition (input list is ascending) is not
checked.

fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]

valid (fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")]) == True

valid (fromAscListWith (++) [(5,"a"), (3,"b"), (5,"b")]) == False

fromAscListWithKey :: Eq k => (k -> a -> a -> a)

-> [(k, a)] -> Map k a

O(n). Build a map from an ascending list in linear time with a combining
function for equal keys. The precondition (input list is ascending) is not
checked.

let f k a1 a2 = (show k) ++ ":" ++ a1 ++ a2

fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")] == fromList [(3, "b"), (5, "5:b5:ba")]

valid (fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")]) == True

valid (fromAscListWithKey f [(5,"a"), (3,"b"), (5,"b"), (5,"b")]) == False

fromDistinctAscList :: [(k, a)] -> Map k a

O(n). Build a map from an ascending list of distinct elements in linear
time. The precondition is not checked.

fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

valid (fromDistinctAscList [(3,"b"), (5,"a")]) == True

valid (fromDistinctAscList [(3,"b"), (5,"a"), (5,"b")]) == False

92 CHAPTER 6. DATA.MAP.BASE

6.9 Filter

filter :: (a -> Bool) -> Map k a -> Map k a

O(n). Filter all values that satisfy the predicate.

filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty

filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty

filterWithKey :: (k -> a -> Bool) -> Map k a -> Map k a

O(n). Filter all keys/values that satisfy the predicate.

filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

partition :: (a -> Bool) -> Map k a -> (Map k a, Map k a)

O(n). Partition the map according to a predicate. The first map contains
all elements that satisfy the predicate, the second all elements that fail
the predicate. See also split.

partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")

partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)

partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

partitionWithKey :: (k -> a -> Bool)

-> Map k a -> (Map k a, Map k a)

O(n). Partition the map according to a predicate. The first map contains
all elements that satisfy the predicate, the second all elements that fail
the predicate. See also split.

partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b")

partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)

partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b

O(n). Map values and collect the Just results.

let f x = if x == "a" then Just "new a" else Nothing

mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"

mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b

O(n). Map keys/values and collect the Just results.

6.9. FILTER 93

let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing

mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"

mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c)

O(n). Map values and separate the Left and Right results.

let f a = if a < "c" then Left a else Right a

mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")])

mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

mapEitherWithKey :: (k -> a -> Either b c)

-> Map k a -> (Map k b, Map k c)

O(n). Map keys/values and separate the Left and Right results.

let f k a = if k < 5 then Left (k * 2) else Right (a ++ a)

mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")])

mapEitherWithKey (_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])

split :: Ord k => k -> Map k a -> (Map k a, Map k a)

O(log n). The expression (split k map) is a pair (map1,map2) where the
keys in map1 are smaller than k and the keys in map2 larger than k. Any
key equal to k is found in neither map1 nor map2.

split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")])

split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a")

split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")

split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty)

split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty)

splitLookup :: Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)

O(log n). The expression (splitLookup k map) splits a map just like split

but also returns lookup k map.

splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")])

splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a")

splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a")

splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty)

splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty)

94 CHAPTER 6. DATA.MAP.BASE

6.10 Submap

isSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool

O(n+m). This function is defined as (isSubmapOf = isSubmapOfBy (==)).

isSubmapOfBy :: Ord k => (a -> b -> Bool)

-> Map k a -> Map k b -> Bool

O(n+m). The expression (isSubmapOfBy f t1 t2) returns True if all keys in
t1 are in tree t2, and when f returns True when applied to their respective
values. For example, the following expressions are all True:

isSubmapOfBy (==) (fromList [(’a’,1)]) (fromList [(’a’,1),(’b’,2)])

isSubmapOfBy (<=) (fromList [(’a’,1)]) (fromList [(’a’,1),(’b’,2)])

isSubmapOfBy (==) (fromList [(’a’,1),(’b’,2)]) (fromList [(’a’,1),(’b’,2)])

But the following are all False:

isSubmapOfBy (==) (fromList [(’a’,2)]) (fromList [(’a’,1),(’b’,2)])

isSubmapOfBy (<) (fromList [(’a’,1)]) (fromList [(’a’,1),(’b’,2)])

isSubmapOfBy (==) (fromList [(’a’,1),(’b’,2)]) (fromList [(’a’,1)])

isProperSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). Defined
as (isProperSubmapOf = isProperSubmapOfBy (==)).

isProperSubmapOfBy :: Ord k => (a -> b -> Bool)

-> Map k a -> Map k b -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). The
expression (isProperSubmapOfBy f m1 m2) returns True when m1 and m2 are
not equal, all keys in m1 are in m2, and when f returns True when applied
to their respective values. For example, the following expressions are all
True:

isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

But the following are all False:

isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])

isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

6.11. INDEXED 95

6.11 Indexed

lookupIndex :: Ord k => k -> Map k a -> Maybe Int

O(log n). Lookup the index of a key. The index is a number from 0 up
to, but not including, the size of the map.

isJust (lookupIndex 2 (fromList [(5,"a"), (3,"b")])) == False

fromJust (lookupIndex 3 (fromList [(5,"a"), (3,"b")])) == 0

fromJust (lookupIndex 5 (fromList [(5,"a"), (3,"b")])) == 1

isJust (lookupIndex 6 (fromList [(5,"a"), (3,"b")])) == False

findIndex :: Ord k => k -> Map k a -> Int

O(log n). Return the index of a key. The index is a number from 0 up to,
but not including, the size of the map. Calls error when the key is not a
member of the map.

findIndex 2 (fromList [(5,"a"), (3,"b")]) Error: element is not in the map

findIndex 3 (fromList [(5,"a"), (3,"b")]) == 0

findIndex 5 (fromList [(5,"a"), (3,"b")]) == 1

findIndex 6 (fromList [(5,"a"), (3,"b")]) Error: element is not in the map

elemAt :: Int -> Map k a -> (k, a)

O(log n). Retrieve an element by index. Calls error when an invalid index
is used.

elemAt 0 (fromList [(5,"a"), (3,"b")]) == (3,"b")

elemAt 1 (fromList [(5,"a"), (3,"b")]) == (5, "a")

elemAt 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range

updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a

O(log n). Update the element at index. Calls error when an invalid index
is used.

updateAt (\ _ _ -> Just "x") 0 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "x"), (5, "a")]

updateAt (\ _ _ -> Just "x") 1 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "x")]

updateAt (\ _ _ -> Just "x") 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range

updateAt (\ _ _ -> Just "x") (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range

updateAt (_ _ -> Nothing) 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateAt (_ _ -> Nothing) 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateAt (_ _ -> Nothing) 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range

updateAt (_ _ -> Nothing) (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range

deleteAt :: Int -> Map k a -> Map k a

O(log n). Delete the element at index. Defined as (deleteAt i map =

updateAt (k x -> Nothing) i map).

96 CHAPTER 6. DATA.MAP.BASE

deleteAt 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

deleteAt 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

deleteAt 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range

deleteAt (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range

6.12 Min/Max

findMin :: Map k a -> (k, a)

O(log n). The minimal key of the map. Calls error if the map is empty.

findMin (fromList [(5,"a"), (3,"b")]) == (3,"b")

findMin empty Error: empty map has no minimal element

findMax :: Map k a -> (k, a)

O(log n). The maximal key of the map. Calls error if the map is empty.

findMax (fromList [(5,"a"), (3,"b")]) == (5,"a")

findMax empty Error: empty map has no maximal element

deleteMin :: Map k a -> Map k a

O(log n). Delete the minimal key. Returns an empty map if the map is
empty.

deleteMin (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(5,"a"), (7,"c")]

deleteMin empty == empty

deleteMax :: Map k a -> Map k a

O(log n). Delete the maximal key. Returns an empty map if the map is
empty.

deleteMax (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(3,"b"), (5,"a")]

deleteMax empty == empty

deleteFindMin :: Map k a -> ((k, a), Map k a)

O(log n). Delete and find the minimal element.

deleteFindMin (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((3,"b"), fromList[(5,"a"), (10,"c")])

deleteFindMin Error: can not return the minimal element of an empty map

deleteFindMax :: Map k a -> ((k, a), Map k a)

O(log n). Delete and find the maximal element.

6.12. MIN/MAX 97

deleteFindMax (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((10,"c"), fromList [(3,"b"), (5,"a")])

deleteFindMax empty Error: can not return the maximal element of an empty map

updateMin :: (a -> Maybe a) -> Map k a -> Map k a

O(log n). Update the value at the minimal key.

updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]

updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMax :: (a -> Maybe a) -> Map k a -> Map k a

O(log n). Update the value at the maximal key.

updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]

updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a

O(log n). Update the value at the minimal key.

updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]

updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a

O(log n). Update the value at the maximal key.

updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]

updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

minView :: Map k a -> Maybe (a, Map k a)

O(log n). Retrieves the value associated with minimal key of the map,
and the map stripped of that element, or Nothing if passed an empty map.

minView (fromList [(5,"a"), (3,"b")]) == Just ("b", singleton 5 "a")

minView empty == Nothing

maxView :: Map k a -> Maybe (a, Map k a)

O(log n). Retrieves the value associated with maximal key of the map,
and the map stripped of that element, or Nothing if passed an

maxView (fromList [(5,"a"), (3,"b")]) == Just ("a", singleton 3 "b")

maxView empty == Nothing

98 CHAPTER 6. DATA.MAP.BASE

minViewWithKey :: Map k a -> Maybe ((k, a), Map k a)

O(log n). Retrieves the minimal (key,value) pair of the map, and the map
stripped of that element, or Nothing if passed an empty map.

minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a")

minViewWithKey empty == Nothing

maxViewWithKey :: Map k a -> Maybe ((k, a), Map k a)

O(log n). Retrieves the maximal (key,value) pair of the map, and the map
stripped of that element, or Nothing if passed an empty map.

maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b")

maxViewWithKey empty == Nothing

6.13 Debugging

showTree :: (Show k, Show a) => Map k a -> String

O(n). Show the tree that implements the map. The tree is shown in a
compressed, hanging format. See showTreeWith.

showTreeWith :: (k -> a -> String)

-> Bool -> Bool -> Map k a -> String

O(n). The expression (showTreeWith showelem hang wide map) shows the
tree that implements the map. Elements are shown using the showElem

function. If hang is True, a hanging tree is shown otherwise a rotated tree
is shown. If wide is True, an extra wide version is shown.

Map> let t = fromDistinctAscList [(x,()) | x <- [1..5]]

Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True False t

(4,())

+--(2,())

| +--(1,())

| +--(3,())

+--(5,())

Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True True t

(4,())

|

+--(2,())

| |

| +--(1,())

| |

| +--(3,())

|

6.13. DEBUGGING 99

+--(5,())

Map> putStrLn $ showTreeWith (\k x -> show (k,x)) False True t

+--(5,())

|

(4,())

|

| +--(3,())

| |

+--(2,())

|

+--(1,())

valid :: Ord k => Map k a -> Bool

O(n). Test if the internal map structure is valid.

valid (fromAscList [(3,"b"), (5,"a")]) == True

valid (fromAscList [(5,"a"), (3,"b")]) == False

bin :: k -> a -> Map k a -> Map k a -> Map k a

balance :: k -> a -> Map k a -> Map k a -> Map k a

balanced :: Map k a -> Bool

Exported only for Debug.QuickCheck

balanceL :: k -> a -> Map k a -> Map k a -> Map k a

balanceR :: k -> a -> Map k a -> Map k a -> Map k a

delta :: Int

join :: k -> a -> Map k a -> Map k a -> Map k a

merge :: Map k a -> Map k a -> Map k a

glue :: Map k a -> Map k a -> Map k a

trim :: Ord k => MaybeS k -> MaybeS k -> Map k a -> Map k a

trimLookupLo :: Ord k => k -> MaybeS k -> Map k a -> (Maybe a, Map k a)

foldlStrict :: (a -> b -> a) -> a -> [b] -> a

data MaybeS a

= NothingS

| JustS !a

100 CHAPTER 6. DATA.MAP.BASE

filterGt :: Ord k => MaybeS k -> Map k v -> Map k v

filterLt :: Ord k => MaybeS k -> Map k v -> Map k v

Chapter 7

Data.Map.Strict

module Data.Map.Strict (

Map, (!), (\\), null, size, member, notMember, lookup,

findWithDefault, lookupLT, lookupGT, lookupLE, lookupGE, empty,

singleton, insert, insertWith, insertWithKey, insertLookupWithKey,

delete, adjust, adjustWithKey, update, updateWithKey,

updateLookupWithKey, alter, union, unionWith, unionWithKey, unions,

unionsWith, difference, differenceWith, differenceWithKey,

intersection, intersectionWith, intersectionWithKey, mergeWithKey, map,

mapWithKey, traverseWithKey, mapAccum, mapAccumWithKey,

mapAccumRWithKey, mapKeys, mapKeysWith, mapKeysMonotonic, foldr,

foldl, foldrWithKey, foldlWithKey, foldr’, foldl’, foldrWithKey’,

foldlWithKey’, elems, keys, assocs, keysSet, fromSet, toList,

fromList, fromListWith, fromListWithKey, toAscList, toDescList,

fromAscList, fromAscListWith, fromAscListWithKey, fromDistinctAscList,

filter, filterWithKey, partition, partitionWithKey, mapMaybe,

mapMaybeWithKey, mapEither, mapEitherWithKey, split, splitLookup,

isSubmapOf, isSubmapOfBy, isProperSubmapOf, isProperSubmapOfBy,

lookupIndex, findIndex, elemAt, updateAt, deleteAt, findMin, findMax,

deleteMin, deleteMax, deleteFindMin, deleteFindMax, updateMin,

updateMax, updateMinWithKey, updateMaxWithKey, minView, maxView,

minViewWithKey, maxViewWithKey, showTree, showTreeWith, valid

) where

An efficient implementation of ordered maps from keys to values (dictionaries).

API of this module is strict in both the keys and the values. If you need value-
lazy maps, use Lazy instead. The Map type is shared between the lazy and strict

101

102 CHAPTER 7. DATA.MAP.STRICT

modules, meaning that the same Map value can be passed to functions in both
modules (although that is rarely needed).

These modules are intended to be imported qualified, to avoid name clashes
with Prelude functions, e.g.

import qualified Data.Map.Strict as Map

The implementation of Map is based on size balanced binary trees (or trees of
bounded balance) as described by:

• Stephen Adams, ”Efficient sets: a balancing act”, Journal of Functional
Programming 3(4):553-562, October 1993, http://www.swiss.ai.mit.

edu/~adams/BB/.

• J. Nievergelt and E.M. Reingold, ”Binary search trees of bounded balance”,
SIAM journal of computing 2(1), March 1973.

Note that the implementation is left-biased – the elements of a first argument
are always preferred to the second, for example in union or insert.

Operation comments contain the operation time complexity in the Big-O nota-
tion (http://en.wikipedia.org/wiki/Big_O_notation).

Be aware that the Functor, Traversable and Data instances are the same as for
the Lazy module, so if they are used on strict maps, the resulting maps will be
lazy.

7.1 Strictness properties

This module satisfies the following strictness properties:

1. Key and value arguments are evaluated to WHNF;

2. Keys and values are evaluated to WHNF before they are stored in the
map.

Here are some examples that illustrate the first property:

insertWith (\ new old -> old) k undefined m == undefined

delete undefined m == undefined

http://www.swiss.ai.mit.edu/~adams/BB/
http://www.swiss.ai.mit.edu/~adams/BB/
http://en.wikipedia.org/wiki/Big_O_notation

7.2. MAP TYPE 103

Here are some examples that illustrate the second property:

map (\ v -> undefined) m == undefined -- m is not empty

mapKeys (\ k -> undefined) m == undefined -- m is not empty

7.2 Map type

data Map k a

A Map from keys k to values a.

instance Typeable2 Map

instance Functor (Map k)

instance Foldable (Map k)

instance Traversable (Map k)

instance (Eq k, Eq a) => Eq (Map k a)

instance (Data k, Data a, Ord k) => Data (Map k a)

instance (Ord k, Ord v) => Ord (Map k v)

instance (Ord k, Read k, Read e) => Read (Map k e)

instance (Show k, Show a) => Show (Map k a)

instance (NFData k, NFData a) => NFData (Map k a)

instance Ord k => Monoid (Map k v)

7.3 Operators

(!) :: Ord k => Map k a -> k -> a

O(log n). Find the value at a key. Calls error when the element can not
be found.

fromList [(5,’a’), (3,’b’)] ! 1 Error: element not in the map

fromList [(5,’a’), (3,’b’)] ! 5 == ’a’

(\\) :: Ord k => Map k a -> Map k b -> Map k a

Same as difference.

7.4 Query

null :: Map k a -> Bool

O(1). Is the map empty?

104 CHAPTER 7. DATA.MAP.STRICT

Data.Map.null (empty) == True

Data.Map.null (singleton 1 ’a’) == False

size :: Map k a -> Int

O(1). The number of elements in the map.

size empty == 0

size (singleton 1 ’a’) == 1

size (fromList([(1,’a’), (2,’c’), (3,’b’)])) == 3

member :: Ord k => k -> Map k a -> Bool

O(log n). Is the key a member of the map? See also notMember.

member 5 (fromList [(5,’a’), (3,’b’)]) == True

member 1 (fromList [(5,’a’), (3,’b’)]) == False

notMember :: Ord k => k -> Map k a -> Bool

O(log n). Is the key not a member of the map? See also member.

notMember 5 (fromList [(5,’a’), (3,’b’)]) == False

notMember 1 (fromList [(5,’a’), (3,’b’)]) == True

lookup :: Ord k => k -> Map k a -> Maybe a

O(log n). Lookup the value at a key in the map.

The function will return the corresponding value as (Just value), or
Nothing if the key isn’t in the map.

An example of using lookup:

import Prelude hiding (lookup)

import Data.Map

employeeDept = fromList([("John","Sales"), ("Bob","IT")])

deptCountry = fromList([("IT","USA"), ("Sales","France")])

countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])

employeeCurrency :: String -> Maybe String

employeeCurrency name = do

dept <- lookup name employeeDept

country <- lookup dept deptCountry

lookup country countryCurrency

main = do

putStrLn $ "John’s currency: " ++ (show (employeeCurrency "John"))

putStrLn $ "Pete’s currency: " ++ (show (employeeCurrency "Pete"))

7.4. QUERY 105

The output of this program:

John’s currency: Just "Euro"

Pete’s currency: Nothing

findWithDefault :: Ord k => a -> k -> Map k a -> a

O(log n). The expression (findWithDefault def k map) returns the value
at key k or returns default value def when the key is not in the map.

findWithDefault ’x’ 1 (fromList [(5,’a’), (3,’b’)]) == ’x’

findWithDefault ’x’ 5 (fromList [(5,’a’), (3,’b’)]) == ’a’

lookupLT :: Ord k => k -> Map k v -> Maybe (k, v)

O(log n). Find largest key smaller than the given one and return the
corresponding (key, value) pair.

lookupLT 3 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLT 4 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupGT :: Ord k => k -> Map k v -> Maybe (k, v)

O(log n). Find smallest key greater than the given one and return the
corresponding (key, value) pair.

lookupGT 4 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGT 5 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLE :: Ord k => k -> Map k v -> Maybe (k, v)

O(log n). Find largest key smaller or equal to the given one and return
the corresponding (key, value) pair.

lookupLE 2 (fromList [(3,’a’), (5,’b’)]) == Nothing

lookupLE 4 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupLE 5 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGE :: Ord k => k -> Map k v -> Maybe (k, v)

O(log n). Find smallest key greater or equal to the given one and return
the corresponding (key, value) pair.

lookupGE 3 (fromList [(3,’a’), (5,’b’)]) == Just (3, ’a’)

lookupGE 4 (fromList [(3,’a’), (5,’b’)]) == Just (5, ’b’)

lookupGE 6 (fromList [(3,’a’), (5,’b’)]) == Nothing

106 CHAPTER 7. DATA.MAP.STRICT

7.5 Construction

empty :: Map k a

O(1). The empty map.

empty == fromList []

size empty == 0

singleton :: k -> a -> Map k a

O(1). A map with a single element.

singleton 1 ’a’ == fromList [(1, ’a’)]

size (singleton 1 ’a’) == 1

7.5.1 Insertion

insert :: Ord k => k -> a -> Map k a -> Map k a

O(log n). Insert a new key and value in the map. If the key is already
present in the map, the associated value is replaced with the supplied
value. insert is equivalent to insertWith const.

insert 5 ’x’ (fromList [(5,’a’), (3,’b’)]) == fromList [(3, ’b’), (5, ’x’)]

insert 7 ’x’ (fromList [(5,’a’), (3,’b’)]) == fromList [(3, ’b’), (5, ’a’), (7, ’x’)]

insert 5 ’x’ empty == singleton 5 ’x’

insertWith :: Ord k => (a -> a -> a)

-> k -> a -> Map k a -> Map k a

O(log n). Insert with a function, combining new value and old value.
insertWith f key value mp will insert the pair (key, value) into mp if key
does not exist in the map. If the key does exist, the function will insert
the pair (key, f new_value old_value).

insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]

insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]

insertWith (++) 5 "xxx" empty == singleton 5 "xxx"

insertWithKey :: Ord k => (k -> a -> a -> a)

-> k -> a -> Map k a -> Map k a

O(log n). Insert with a function, combining key, new value and old value.
insertWithKey f key value mp will insert the pair (key, value) into mp if
key does not exist in the map. If the key does exist, the function will insert
the pair (key,f key new_value old_value). Note that the key passed to f
is the same key passed to insertWithKey.

7.5. CONSTRUCTION 107

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]

insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]

insertWithKey f 5 "xxx" empty == singleton 5 "xxx"

insertLookupWithKey :: Ord k => (k -> a -> a -> a)

-> k -> a -> Map k a -> (Maybe a, Map k a)

O(log n). Combines insert operation with old value retrieval. The expres-
sion (insertLookupWithKey f k x map) is a pair where the first element is
equal to (lookup k map) and the second element equal to (insertWithKey
f k x map).

let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value

insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])

insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")])

insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx")

This is how to define insertLookup using insertLookupWithKey:

let insertLookup kx x t = insertLookupWithKey (_ a _ -> a) kx x t

insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])

insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")])

7.5.2 Delete/Update

delete :: Ord k => k -> Map k a -> Map k a

O(log n). Delete a key and its value from the map. When the key is not
a member of the map, the original map is returned.

delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

delete 5 empty == empty

adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a

O(log n). Update a value at a specific key with the result of the provided
function. When the key is not a member of the map, the original map is
returned.

adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]

adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

adjust ("new " ++) 7 empty == empty

adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a

O(log n). Adjust a value at a specific key. When the key is not a member
of the map, the original map is returned.

108 CHAPTER 7. DATA.MAP.STRICT

let f key x = (show key) ++ ":new " ++ x

adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]

adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

adjustWithKey f 7 empty == empty

update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a

O(log n). The expression (update f k map) updates the value x at k (if it
is in the map). If (f x) is Nothing, the element is deleted. If it is (Just y),
the key k is bound to the new value y.

let f x = if x == "a" then Just "new a" else Nothing

update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]

update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateWithKey :: Ord k => (k -> a -> Maybe a)

-> k -> Map k a -> Map k a

O(log n). The expression (updateWithKey f k map) updates the value x at
k (if it is in the map). If (f k x) is Nothing, the element is deleted. If it is
(Just y), the key k is bound to the new value y.

let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing

updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]

updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateLookupWithKey :: Ord k => (k -> a -> Maybe a)

-> k -> Map k a -> (Maybe a, Map k a)

O(log n). Lookup and update. See also updateWithKey. The function
returns changed value, if it is updated. Returns the original key value if
the map entry is deleted.

let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing

updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "5:new a", fromList [(3, "b"), (5, "5:new a")])

updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")])

updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a

O(log n). The expression (alter f k map) alters the value x at k, or ab-
sence thereof. alter can be used to insert, delete, or update a value in a
Map. In short : lookup k (alter f k m) = f (lookup k m).

7.6. COMBINE 109

let f _ = Nothing

alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]

alter f 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

let f _ = Just "c"

alter f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "c")]

alter f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "c")]

7.6 Combine

7.6.1 Union

union :: Ord k => Map k a -> Map k a -> Map k a

O(n+m). The expression (union t1 t2) takes the left-biased union of t1

and t2. It prefers t1 when duplicate keys are encountered, i.e. (union
== unionWith const). The implementation uses the efficient hedge-union
algorithm. Hedge-union is more efficient on (bigset ‘union‘ smallset).

union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

unionWith :: Ord k => (a -> a -> a)

-> Map k a -> Map k a -> Map k a

O(n+m). Union with a combining function. The implementation uses the
efficient hedge-union algorithm.

unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

unionWithKey :: Ord k => (k -> a -> a -> a)

-> Map k a -> Map k a -> Map k a

O(n+m). Union with a combining function. The implementation uses the
efficient hedge-union algorithm. Hedge-union is more efficient on (bigset
‘union‘ smallset).

let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value

unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]

unions :: Ord k => [Map k a] -> Map k a

The union of a list of maps: (unions == foldl union empty).

unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]

== fromList [(3, "b"), (5, "a"), (7, "C")]

unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]

== fromList [(3, "B3"), (5, "A3"), (7, "C")]

110 CHAPTER 7. DATA.MAP.STRICT

unionsWith :: Ord k => (a -> a -> a) -> [Map k a] -> Map k a

The union of a list of maps, with a combining operation: (unionsWith f

== foldl (unionWith f) empty).

unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]

== fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

7.6.2 Difference

difference :: Ord k => Map k a -> Map k b -> Map k a

O(n+m). Difference of two maps. Return elements of the first map not
existing in the second map. The implementation uses an efficient hedge
algorithm comparable with hedge-union.

difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

differenceWith :: Ord k => (a -> b -> Maybe a)

-> Map k a -> Map k b -> Map k a

O(n+m). Difference with a combining function. When two equal keys are
encountered, the combining function is applied to the values of these keys.
If it returns Nothing, the element is discarded (proper set difference). If
it returns (Just y), the element is updated with a new value y. The
implementation uses an efficient hedge algorithm comparable with hedge-
union.

let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing

differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])

== singleton 3 "b:B"

differenceWithKey :: Ord k => (k -> a -> b -> Maybe a)

-> Map k a -> Map k b -> Map k a

O(n+m). Difference with a combining function. When two equal keys are
encountered, the combining function is applied to the key and both values.
If it returns Nothing, the element is discarded (proper set difference). If
it returns (Just y), the element is updated with a new value y. The
implementation uses an efficient hedge algorithm comparable with hedge-
union.

let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing

differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])

== singleton 3 "3:b|B"

7.6. COMBINE 111

7.6.3 Intersection

intersection :: Ord k => Map k a -> Map k b -> Map k a

O(n+m). Intersection of two maps. Return data in the first map for
the keys existing in both maps. (intersection m1 m2 == intersectionWith

const m1 m2).

intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

intersectionWith :: Ord k => (a -> b -> c)

-> Map k a -> Map k b -> Map k c

O(n+m). Intersection with a combining function.

intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWithKey :: Ord k => (k -> a -> b -> c)

-> Map k a -> Map k b -> Map k c

O(n+m). Intersection with a combining function. Intersection is more
efficient on (bigset ‘intersection‘ smallset).

let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar

intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

7.6.4 Universal combining function

mergeWithKey :: Ord k => (k -> a -> b -> Maybe c)

-> (Map k a -> Map k c)

-> (Map k b -> Map k c) -> Map k a -> Map k b -> Map k c

O(n+m). A high-performance universal combining function. This func-
tion is used to define unionWith, unionWithKey, differenceWith, differenceWithKey,
intersectionWith, intersectionWithKey and can be used to define other
custom combine functions.

Please make sure you know what is going on when using mergeWithKey,
otherwise you can be surprised by unexpected code growth or even cor-
ruption of the data structure.

When mergeWithKey is given three arguments, it is inlined to the call
site. You should therefore use mergeWithKey only to define your cus-
tom combining functions. For example, you could define unionWithKey,
differenceWithKey and intersectionWithKey as

myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2

myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2

myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2

112 CHAPTER 7. DATA.MAP.STRICT

When calling mergeWithKey combine only1 only2, a function combining
two IntMaps is created, such that

• if a key is present in both maps, it is passed with both corresponding
values to the combine function. Depending on the result, the key is
either present in the result with specified value, or is left out;

• a nonempty subtree present only in the first map is passed to only1

and the output is added to the result;

• a nonempty subtree present only in the second map is passed to only2

and the output is added to the result.

The only1 and only2 methods must return a map with a subset (possibly
empty) of the keys of the given map. The values can be modified arbitrar-
ily. Most common variants of only1 and only2 are id and const empty,
but for example map f or filterWithKey f could be used for any f.

7.7 Traversal

7.7.1 Map

map :: (a -> b) -> Map k a -> Map k b

O(n). Map a function over all values in the map.

map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]

mapWithKey :: (k -> a -> b) -> Map k a -> Map k b

O(n). Map a function over all values in the map.

let f key x = (show key) ++ ":" ++ x

mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]

traverseWithKey :: Applicative t => (k -> a -> t b)

-> Map k a -> t (Map k b)

O(n). traverseWithKey f s == fromList $ traverse ((k, v) -> (,) k $

f k v) (toList m) That is, behaves exactly like a regular traverse except
that the traversing function also has access to the key associated with a
value.

traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, ’a’), (5, ’e’)]) == Just (fromList [(1, ’b’), (5, ’f’)])

traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, ’c’)]) == Nothing

$
$

7.7. TRAVERSAL 113

mapAccum :: (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)

O(n). The function mapAccum threads an accumulating argument through
the map in ascending order of keys.

let f a b = (a ++ b, b ++ "X")

mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])

mapAccumWithKey :: (a -> k -> b -> (a, c))

-> a -> Map k b -> (a, Map k c)

O(n). The function mapAccumWithKey threads an accumulating argument
through the map in ascending order of keys.

let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X")

mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])

mapAccumRWithKey :: (a -> k -> b -> (a, c))

-> a -> Map k b -> (a, Map k c)

O(n). The function mapAccumR threads an accumulating argument through
the map in descending order of keys.

mapKeys :: Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a

O(n*log n). mapKeys f s is the map obtained by applying f to each key of
s.

The size of the result may be smaller if f maps two or more distinct keys
to the same new key. In this case the value at the greatest of the original
keys is retained.

mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")]

mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c"

mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"

mapKeysWith :: Ord k2 => (a -> a -> a)

-> (k1 -> k2) -> Map k1 a -> Map k2 a

O(n*log n). mapKeysWith c f s is the map obtained by applying f to each
key of s.

The size of the result may be smaller if f maps two or more distinct keys
to the same new key. In this case the associated values will be combined
using c.

mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab"

mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"

114 CHAPTER 7. DATA.MAP.STRICT

mapKeysMonotonic :: (k1 -> k2) -> Map k1 a -> Map k2 a

O(n). mapKeysMonotonic f s == mapKeys f s, but works only when f is
strictly monotonic. That is, for any values x and y, if x ¡ y then f x ¡ f y.
The precondition is not checked. Semi-formally, we have:

and [x < y ==> f x < f y | x <- ls, y <- ls]

==> mapKeysMonotonic f s == mapKeys f s

where ls = keys s

This means that f maps distinct original keys to distinct resulting keys.
This function has better performance than mapKeys.

mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")]

valid (mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")])) == True

valid (mapKeysMonotonic (\ _ -> 1) (fromList [(5,"a"), (3,"b")])) == False

7.8 Folds

foldr :: (a -> b -> b) -> b -> Map k a -> b

O(n). Fold the values in the map using the given right-associative binary
operator, such that foldr f z == foldr f z . elems.

For example,

elems map = foldr (:) [] map

let f a len = len + (length a)

foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4

foldl :: (a -> b -> a) -> a -> Map k b -> a

O(n). Fold the values in the map using the given left-associative binary
operator, such that foldl f z == foldl f z . elems.

For example,

elems = reverse . foldl (flip (:)) []

let f len a = len + (length a)

foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4

foldrWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b

O(n). Fold the keys and values in the map using the given right-associative
binary operator, such that foldrWithKey f z == foldr (uncurry f) z .

toAscList.

For example,

7.8. FOLDS 115

keys map = foldrWithKey (\k x ks -> k:ks) [] map

let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"

foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)"

foldlWithKey :: (a -> k -> b -> a) -> a -> Map k b -> a

O(n). Fold the keys and values in the map using the given left-associative
binary operator, such that foldlWithKey f z == foldl (\z’ (kx, x) -> f

z’ kx x) z . toAscList.

For example,

keys = reverse . foldlWithKey (\ks k x -> k:ks) []

let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")"

foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)"

7.8.1 Strict folds

foldr’ :: (a -> b -> b) -> b -> Map k a -> b

O(n). A strict version of foldr. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldl’ :: (a -> b -> a) -> a -> Map k b -> a

O(n). A strict version of foldl. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldrWithKey’ :: (k -> a -> b -> b) -> b -> Map k a -> b

O(n). A strict version of foldrWithKey. Each application of the operator
is evaluated before using the result in the next application. This function
is strict in the starting value.

foldlWithKey’ :: (a -> k -> b -> a) -> a -> Map k b -> a

O(n). A strict version of foldlWithKey. Each application of the operator
is evaluated before using the result in the next application. This function
is strict in the starting value.

116 CHAPTER 7. DATA.MAP.STRICT

7.9 Conversion

elems :: Map k a -> [a]

O(n). Return all elements of the map in the ascending order of their keys.
Subject to list fusion.

elems (fromList [(5,"a"), (3,"b")]) == ["b","a"]

elems empty == []

keys :: Map k a -> [k]

O(n). Return all keys of the map in ascending order. Subject to list
fusion.

keys (fromList [(5,"a"), (3,"b")]) == [3,5]

keys empty == []

assocs :: Map k a -> [(k, a)]

O(n). An alias for toAscList. Return all key/value pairs in the map in
ascending key order. Subject to list fusion.

assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

assocs empty == []

keysSet :: Map k a -> Set k

O(n). The set of all keys of the map.

keysSet (fromList [(5,"a"), (3,"b")]) == Data.Set.fromList [3,5]

keysSet empty == Data.Set.empty

fromSet :: (k -> a) -> Set k -> Map k a

O(n). Build a map from a set of keys and a function which for each key
computes its value.

fromSet (\k -> replicate k ’a’) (Data.Set.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")]

fromSet undefined Data.Set.empty == empty

7.9.1 Lists

toList :: Map k a -> [(k, a)]

O(n). Convert the map to a list of key/value pairs. Subject to list fusion.

toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toList empty == []

7.9. CONVERSION 117

fromList :: Ord k => [(k, a)] -> Map k a

O(n*log n). Build a map from a list of key/value pairs. See also fromAscList.
If the list contains more than one value for the same key, the last value
for the key is retained.

fromList [] == empty

fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]

fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

fromListWith :: Ord k => (a -> a -> a) -> [(k, a)] -> Map k a

O(n*log n). Build a map from a list of key/value pairs with a combining
function. See also fromAscListWith.

fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]

fromListWith (++) [] == empty

fromListWithKey :: Ord k => (k -> a -> a -> a)

-> [(k, a)] -> Map k a

O(n*log n). Build a map from a list of key/value pairs with a combining
function. See also fromAscListWithKey.

let f k a1 a2 = (show k) ++ a1 ++ a2

fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "3ab"), (5, "5a5ba")]

fromListWithKey f [] == empty

7.9.2 Ordered lists

toAscList :: Map k a -> [(k, a)]

O(n). Convert the map to a list of key/value pairs where the keys are in
ascending order. Subject to list fusion.

toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]

toDescList :: Map k a -> [(k, a)]

O(n). Convert the map to a list of key/value pairs where the keys are in
descending order. Subject to list fusion.

toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")]

fromAscList :: Eq k => [(k, a)] -> Map k a

O(n). Build a map from an ascending list in linear time. The precondition
(input list is ascending) is not checked.

118 CHAPTER 7. DATA.MAP.STRICT

fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]

valid (fromAscList [(3,"b"), (5,"a"), (5,"b")]) == True

valid (fromAscList [(5,"a"), (3,"b"), (5,"b")]) == False

fromAscListWith :: Eq k => (a -> a -> a) -> [(k, a)] -> Map k a

O(n). Build a map from an ascending list in linear time with a combining
function for equal keys. The precondition (input list is ascending) is not
checked.

fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]

valid (fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")]) == True

valid (fromAscListWith (++) [(5,"a"), (3,"b"), (5,"b")]) == False

fromAscListWithKey :: Eq k => (k -> a -> a -> a)

-> [(k, a)] -> Map k a

O(n). Build a map from an ascending list in linear time with a combining
function for equal keys. The precondition (input list is ascending) is not
checked.

let f k a1 a2 = (show k) ++ ":" ++ a1 ++ a2

fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")] == fromList [(3, "b"), (5, "5:b5:ba")]

valid (fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b"), (5,"b")]) == True

valid (fromAscListWithKey f [(5,"a"), (3,"b"), (5,"b"), (5,"b")]) == False

fromDistinctAscList :: [(k, a)] -> Map k a

O(n). Build a map from an ascending list of distinct elements in linear
time. The precondition is not checked.

fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

valid (fromDistinctAscList [(3,"b"), (5,"a")]) == True

valid (fromDistinctAscList [(3,"b"), (5,"a"), (5,"b")]) == False

7.10 Filter

filter :: (a -> Bool) -> Map k a -> Map k a

O(n). Filter all values that satisfy the predicate.

filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty

filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty

7.10. FILTER 119

filterWithKey :: (k -> a -> Bool) -> Map k a -> Map k a

O(n). Filter all keys/values that satisfy the predicate.

filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

partition :: (a -> Bool) -> Map k a -> (Map k a, Map k a)

O(n). Partition the map according to a predicate. The first map contains
all elements that satisfy the predicate, the second all elements that fail
the predicate. See also split.

partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")

partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)

partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

partitionWithKey :: (k -> a -> Bool)

-> Map k a -> (Map k a, Map k a)

O(n). Partition the map according to a predicate. The first map contains
all elements that satisfy the predicate, the second all elements that fail
the predicate. See also split.

partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b")

partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty)

partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])

mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b

O(n). Map values and collect the Just results.

let f x = if x == "a" then Just "new a" else Nothing

mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"

mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b

O(n). Map keys/values and collect the Just results.

let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing

mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"

mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c)

O(n). Map values and separate the Left and Right results.

let f a = if a < "c" then Left a else Right a

mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")])

mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

120 CHAPTER 7. DATA.MAP.STRICT

mapEitherWithKey :: (k -> a -> Either b c)

-> Map k a -> (Map k b, Map k c)

O(n). Map keys/values and separate the Left and Right results.

let f k a = if k < 5 then Left (k * 2) else Right (a ++ a)

mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")])

mapEitherWithKey (_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

== (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])

split :: Ord k => k -> Map k a -> (Map k a, Map k a)

O(log n). The expression (split k map) is a pair (map1,map2) where the
keys in map1 are smaller than k and the keys in map2 larger than k. Any
key equal to k is found in neither map1 nor map2.

split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")])

split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a")

split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a")

split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty)

split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty)

splitLookup :: Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)

O(log n). The expression (splitLookup k map) splits a map just like split

but also returns lookup k map.

splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")])

splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a")

splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a")

splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty)

splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty)

7.11 Submap

isSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool

O(n+m). This function is defined as (isSubmapOf = isSubmapOfBy (==)).

isSubmapOfBy :: Ord k => (a -> b -> Bool)

-> Map k a -> Map k b -> Bool

O(n+m). The expression (isSubmapOfBy f t1 t2) returns True if all keys in
t1 are in tree t2, and when f returns True when applied to their respective
values. For example, the following expressions are all True:

7.12. INDEXED 121

isSubmapOfBy (==) (fromList [(’a’,1)]) (fromList [(’a’,1),(’b’,2)])

isSubmapOfBy (<=) (fromList [(’a’,1)]) (fromList [(’a’,1),(’b’,2)])

isSubmapOfBy (==) (fromList [(’a’,1),(’b’,2)]) (fromList [(’a’,1),(’b’,2)])

But the following are all False:

isSubmapOfBy (==) (fromList [(’a’,2)]) (fromList [(’a’,1),(’b’,2)])

isSubmapOfBy (<) (fromList [(’a’,1)]) (fromList [(’a’,1),(’b’,2)])

isSubmapOfBy (==) (fromList [(’a’,1),(’b’,2)]) (fromList [(’a’,1)])

isProperSubmapOf :: (Ord k, Eq a) => Map k a -> Map k a -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). Defined
as (isProperSubmapOf = isProperSubmapOfBy (==)).

isProperSubmapOfBy :: Ord k => (a -> b -> Bool)

-> Map k a -> Map k b -> Bool

O(n+m). Is this a proper submap? (ie. a submap but not equal). The
expression (isProperSubmapOfBy f m1 m2) returns True when m1 and m2 are
not equal, all keys in m1 are in m2, and when f returns True when applied
to their respective values. For example, the following expressions are all
True:

isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

But the following are all False:

isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])

isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])

isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])

7.12 Indexed

lookupIndex :: Ord k => k -> Map k a -> Maybe Int

O(log n). Lookup the index of a key. The index is a number from 0 up
to, but not including, the size of the map.

isJust (lookupIndex 2 (fromList [(5,"a"), (3,"b")])) == False

fromJust (lookupIndex 3 (fromList [(5,"a"), (3,"b")])) == 0

fromJust (lookupIndex 5 (fromList [(5,"a"), (3,"b")])) == 1

isJust (lookupIndex 6 (fromList [(5,"a"), (3,"b")])) == False

122 CHAPTER 7. DATA.MAP.STRICT

findIndex :: Ord k => k -> Map k a -> Int

O(log n). Return the index of a key. The index is a number from 0 up to,
but not including, the size of the map. Calls error when the key is not a
member of the map.

findIndex 2 (fromList [(5,"a"), (3,"b")]) Error: element is not in the map

findIndex 3 (fromList [(5,"a"), (3,"b")]) == 0

findIndex 5 (fromList [(5,"a"), (3,"b")]) == 1

findIndex 6 (fromList [(5,"a"), (3,"b")]) Error: element is not in the map

elemAt :: Int -> Map k a -> (k, a)

O(log n). Retrieve an element by index. Calls error when an invalid index
is used.

elemAt 0 (fromList [(5,"a"), (3,"b")]) == (3,"b")

elemAt 1 (fromList [(5,"a"), (3,"b")]) == (5, "a")

elemAt 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range

updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a

O(log n). Update the element at index. Calls error when an invalid index
is used.

updateAt (\ _ _ -> Just "x") 0 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "x"), (5, "a")]

updateAt (\ _ _ -> Just "x") 1 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "x")]

updateAt (\ _ _ -> Just "x") 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range

updateAt (\ _ _ -> Just "x") (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range

updateAt (_ _ -> Nothing) 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateAt (_ _ -> Nothing) 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateAt (_ _ -> Nothing) 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range

updateAt (_ _ -> Nothing) (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range

deleteAt :: Int -> Map k a -> Map k a

O(log n). Delete the element at index. Defined as (deleteAt i map =

updateAt (k x -> Nothing) i map).

deleteAt 0 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

deleteAt 1 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

deleteAt 2 (fromList [(5,"a"), (3,"b")]) Error: index out of range

deleteAt (-1) (fromList [(5,"a"), (3,"b")]) Error: index out of range

7.13 Min/Max

findMin :: Map k a -> (k, a)

O(log n). The minimal key of the map. Calls error if the map is empty.

7.13. MIN/MAX 123

findMin (fromList [(5,"a"), (3,"b")]) == (3,"b")

findMin empty Error: empty map has no minimal element

findMax :: Map k a -> (k, a)

O(log n). The maximal key of the map. Calls error if the map is empty.

findMax (fromList [(5,"a"), (3,"b")]) == (5,"a")

findMax empty Error: empty map has no maximal element

deleteMin :: Map k a -> Map k a

O(log n). Delete the minimal key. Returns an empty map if the map is
empty.

deleteMin (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(5,"a"), (7,"c")]

deleteMin empty == empty

deleteMax :: Map k a -> Map k a

O(log n). Delete the maximal key. Returns an empty map if the map is
empty.

deleteMax (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(3,"b"), (5,"a")]

deleteMax empty == empty

deleteFindMin :: Map k a -> ((k, a), Map k a)

O(log n). Delete and find the minimal element.

deleteFindMin (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((3,"b"), fromList[(5,"a"), (10,"c")])

deleteFindMin Error: can not return the minimal element of an empty map

deleteFindMax :: Map k a -> ((k, a), Map k a)

O(log n). Delete and find the maximal element.

deleteFindMax (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((10,"c"), fromList [(3,"b"), (5,"a")])

deleteFindMax empty Error: can not return the maximal element of an empty map

updateMin :: (a -> Maybe a) -> Map k a -> Map k a

O(log n). Update the value at the minimal key.

updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]

updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

124 CHAPTER 7. DATA.MAP.STRICT

updateMax :: (a -> Maybe a) -> Map k a -> Map k a

O(log n). Update the value at the maximal key.

updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]

updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a

O(log n). Update the value at the minimal key.

updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]

updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a

O(log n). Update the value at the maximal key.

updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]

updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

minView :: Map k a -> Maybe (a, Map k a)

O(log n). Retrieves the value associated with minimal key of the map,
and the map stripped of that element, or Nothing if passed an empty map.

minView (fromList [(5,"a"), (3,"b")]) == Just ("b", singleton 5 "a")

minView empty == Nothing

maxView :: Map k a -> Maybe (a, Map k a)

O(log n). Retrieves the value associated with maximal key of the map,
and the map stripped of that element, or Nothing if passed an

maxView (fromList [(5,"a"), (3,"b")]) == Just ("a", singleton 3 "b")

maxView empty == Nothing

minViewWithKey :: Map k a -> Maybe ((k, a), Map k a)

O(log n). Retrieves the minimal (key,value) pair of the map, and the map
stripped of that element, or Nothing if passed an empty map.

minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a")

minViewWithKey empty == Nothing

maxViewWithKey :: Map k a -> Maybe ((k, a), Map k a)

O(log n). Retrieves the maximal (key,value) pair of the map, and the map
stripped of that element, or Nothing if passed an empty map.

maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b")

maxViewWithKey empty == Nothing

7.14. DEBUGGING 125

7.14 Debugging

showTree :: (Show k, Show a) => Map k a -> String

O(n). Show the tree that implements the map. The tree is shown in a
compressed, hanging format. See showTreeWith.

showTreeWith :: (k -> a -> String)

-> Bool -> Bool -> Map k a -> String

O(n). The expression (showTreeWith showelem hang wide map) shows the
tree that implements the map. Elements are shown using the showElem

function. If hang is True, a hanging tree is shown otherwise a rotated tree
is shown. If wide is True, an extra wide version is shown.

Map> let t = fromDistinctAscList [(x,()) | x <- [1..5]]

Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True False t

(4,())

+--(2,())

| +--(1,())

| +--(3,())

+--(5,())

Map> putStrLn $ showTreeWith (\k x -> show (k,x)) True True t

(4,())

|

+--(2,())

| |

| +--(1,())

| |

| +--(3,())

|

+--(5,())

Map> putStrLn $ showTreeWith (\k x -> show (k,x)) False True t

+--(5,())

|

(4,())

|

| +--(3,())

| |

+--(2,())

|

+--(1,())

valid :: Ord k => Map k a -> Bool

O(n). Test if the internal map structure is valid.

126 CHAPTER 7. DATA.MAP.STRICT

valid (fromAscList [(3,"b"), (5,"a")]) == True

valid (fromAscList [(5,"a"), (3,"b")]) == False

Chapter 8

Data.Set.Base

module Data.Set.Base (

Set(Bin, Tip), (\\), null, size, member, notMember, lookupLT,

lookupGT, lookupLE, lookupGE, isSubsetOf, isProperSubsetOf, empty,

singleton, insert, delete, union, unions, difference, intersection,

filter, partition, split, splitMember, map, mapMonotonic, foldr,

foldl, foldr’, foldl’, fold, findMin, findMax, deleteMin, deleteMax,

deleteFindMin, deleteFindMax, maxView, minView, elems, toList,

fromList, toAscList, toDescList, fromAscList, fromDistinctAscList,

showTree, showTreeWith, valid, bin, balanced, join, merge

) where

An efficient implementation of sets.

These modules are intended to be imported qualified, to avoid name clashes
with Prelude functions, e.g.

import Data.Set (Set)

import qualified Data.Set as Set

The implementation of Set is based on size balanced binary trees (or trees of
bounded balance) as described by:

• Stephen Adams, ”Efficient sets: a balancing act”, Journal of Functional
Programming 3(4):553-562, October 1993, http://www.swiss.ai.mit.

edu/~adams/BB/.

127

http://www.swiss.ai.mit.edu/~adams/BB/
http://www.swiss.ai.mit.edu/~adams/BB/

128 CHAPTER 8. DATA.SET.BASE

• J. Nievergelt and E.M. Reingold, ”Binary search trees of bounded balance”,
SIAM journal of computing 2(1), March 1973.

Note that the implementation is left-biased – the elements of a first argument
are always preferred to the second, for example in union or insert. Of course,
left-biasing can only be observed when equality is an equivalence relation instead
of structural equality.

8.1 Set type

data Set a

= Bin !Size !a !(Set a) !(Set a)

| Tip

A set of values a.

instance Typeable1 Set

instance Foldable Set

instance Eq a => Eq (Set a)

instance (Data a, Ord a) => Data (Set a)

instance Ord a => Ord (Set a)

instance (Read a, Ord a) => Read (Set a)

instance Show a => Show (Set a)

instance NFData a => NFData (Set a)

instance Ord a => Monoid (Set a)

8.2 Operators

(\\) :: Ord a => Set a -> Set a -> Set a

O(n+m). See difference.

8.3 Query

null :: Set a -> Bool

O(1). Is this the empty set?

size :: Set a -> Int

O(1). The number of elements in the set.

8.3. QUERY 129

member :: Ord a => a -> Set a -> Bool

O(log n). Is the element in the set?

notMember :: Ord a => a -> Set a -> Bool

O(log n). Is the element not in the set?

lookupLT :: Ord a => a -> Set a -> Maybe a

O(log n). Find largest element smaller than the given one.

lookupLT 3 (fromList [3, 5]) == Nothing

lookupLT 5 (fromList [3, 5]) == Just 3

lookupGT :: Ord a => a -> Set a -> Maybe a

O(log n). Find smallest element greater than the given one.

lookupGT 4 (fromList [3, 5]) == Just 5

lookupGT 5 (fromList [3, 5]) == Nothing

lookupLE :: Ord a => a -> Set a -> Maybe a

O(log n). Find largest element smaller or equal to the given one.

lookupLE 2 (fromList [3, 5]) == Nothing

lookupLE 4 (fromList [3, 5]) == Just 3

lookupLE 5 (fromList [3, 5]) == Just 5

lookupGE :: Ord a => a -> Set a -> Maybe a

O(log n). Find smallest element greater or equal to the given one.

lookupGE 3 (fromList [3, 5]) == Just 3

lookupGE 4 (fromList [3, 5]) == Just 5

lookupGE 6 (fromList [3, 5]) == Nothing

isSubsetOf :: Ord a => Set a -> Set a -> Bool

O(n+m). Is this a subset? (s1 isSubsetOf s2) tells whether s1 is a subset
of s2.

isProperSubsetOf :: Ord a => Set a -> Set a -> Bool

O(n+m). Is this a proper subset? (ie. a subset but not equal).

130 CHAPTER 8. DATA.SET.BASE

8.4 Construction

empty :: Set a

O(1). The empty set.

singleton :: a -> Set a

O(1). Create a singleton set.

insert :: Ord a => a -> Set a -> Set a

O(log n). Insert an element in a set. If the set already contains an element
equal to the given value, it is replaced with the new value.

delete :: Ord a => a -> Set a -> Set a

O(log n). Delete an element from a set.

8.5 Combine

union :: Ord a => Set a -> Set a -> Set a

O(n+m). The union of two sets, preferring the first set when equal ele-
ments are encountered. The implementation uses the efficient hedge-union
algorithm. Hedge-union is more efficient on (bigset union smallset).

unions :: Ord a => [Set a] -> Set a

The union of a list of sets: (unions == foldl union empty).

difference :: Ord a => Set a -> Set a -> Set a

O(n+m). Difference of two sets. The implementation uses an efficient
hedge algorithm comparable with hedge-union.

intersection :: Ord a => Set a -> Set a -> Set a

O(n+m). The intersection of two sets. Elements of the result come from
the first set, so for example

import qualified Data.Set as S

data AB = A | B deriving Show

instance Ord AB where compare _ _ = EQ

instance Eq AB where _ == _ = True

main = print (S.singleton A ‘S.intersection‘ S.singleton B,

S.singleton B ‘S.intersection‘ S.singleton A)

prints (fromList [A],fromList [B]).

8.6. FILTER 131

8.6 Filter

filter :: (a -> Bool) -> Set a -> Set a

O(n). Filter all elements that satisfy the predicate.

partition :: (a -> Bool) -> Set a -> (Set a, Set a)

O(n). Partition the set into two sets, one with all elements that satisfy
the predicate and one with all elements that don’t satisfy the predicate.
See also split.

split :: Ord a => a -> Set a -> (Set a, Set a)

O(log n). The expression (split x set) is a pair (set1,set2) where set1

comprises the elements of set less than x and set2 comprises the elements
of set greater than x.

splitMember :: Ord a => a -> Set a -> (Set a, Bool, Set a)

O(log n). Performs a split but also returns whether the pivot element
was found in the original set.

8.7 Map

map :: (Ord a, Ord b) => (a -> b) -> Set a -> Set b

O(n*log n). map f s is the set obtained by applying f to each element of
s.

It’s worth noting that the size of the result may be smaller if, for some
(x,y), x /= y && f x == f y

mapMonotonic :: (a -> b) -> Set a -> Set b

O(n). The

mapMonotonic f s == map f s, but works only when f is monotonic. The
precondition is not checked. Semi-formally, we have:

and [x < y ==> f x < f y | x <- ls, y <- ls]

==> mapMonotonic f s == map f s

where ls = toList s

132 CHAPTER 8. DATA.SET.BASE

8.8 Folds

foldr :: (a -> b -> b) -> b -> Set a -> b

O(n). Fold the elements in the set using the given right-associative binary
operator, such that foldr f z == foldr f z . toAscList.

For example,

toAscList set = foldr (:) [] set

foldl :: (a -> b -> a) -> a -> Set b -> a

O(n). Fold the elements in the set using the given left-associative binary
operator, such that foldl f z == foldl f z . toAscList.

For example,

toDescList set = foldl (flip (:)) [] set

8.8.1 Strict folds

foldr’ :: (a -> b -> b) -> b -> Set a -> b

O(n). A strict version of foldr. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

foldl’ :: (a -> b -> a) -> a -> Set b -> a

O(n). A strict version of foldl. Each application of the operator is evalu-
ated before using the result in the next application. This function is strict
in the starting value.

8.8.2 Legacy folds

fold :: (a -> b -> b) -> b -> Set a -> b

O(n). Fold the elements in the set using the given right-associative bi-
nary operator. This function is an equivalent of foldr and is present for
compatibility only.

Please note that fold will be deprecated in the future and removed.

8.9. MIN/MAX 133

8.9 Min/Max

findMin :: Set a -> a

O(log n). The minimal element of a set.

findMax :: Set a -> a

O(log n). The maximal element of a set.

deleteMin :: Set a -> Set a

O(log n). Delete the minimal element.

deleteMax :: Set a -> Set a

O(log n). Delete the maximal element.

deleteFindMin :: Set a -> (a, Set a)

O(log n). Delete and find the minimal element.

deleteFindMin set = (findMin set, deleteMin set)

deleteFindMax :: Set a -> (a, Set a)

O(log n). Delete and find the maximal element.

deleteFindMax set = (findMax set, deleteMax set)

maxView :: Set a -> Maybe (a, Set a)

O(log n). Retrieves the maximal key of the set, and the set stripped of
that element, or Nothing if passed an empty set.

minView :: Set a -> Maybe (a, Set a)

O(log n). Retrieves the minimal key of the set, and the set stripped of
that element, or Nothing if passed an empty set.

8.10 Conversion

8.10.1 List

elems :: Set a -> [a]

O(n). An alias of toAscList. The elements of a set in ascending order.
Subject to list fusion.

134 CHAPTER 8. DATA.SET.BASE

toList :: Set a -> [a]

O(n). Convert the set to a list of elements. Subject to list fusion.

fromList :: Ord a => [a] -> Set a

O(n*log n). Create a set from a list of elements.

8.10.2 Ordered list

toAscList :: Set a -> [a]

O(n). Convert the set to an ascending list of elements. Subject to list
fusion.

toDescList :: Set a -> [a]

O(n). Convert the set to a descending list of elements. Subject to list
fusion.

fromAscList :: Eq a => [a] -> Set a

O(n). Build a set from an ascending list in linear time. The precondition
(input list is ascending) is not checked.

fromDistinctAscList :: [a] -> Set a

O(n). Build a set from an ascending list of distinct elements in linear
time. The precondition (input list is strictly ascending) is not checked.

8.11 Debugging

showTree :: Show a => Set a -> String

O(n). Show the tree that implements the set. The tree is shown in a
compressed, hanging format.

showTreeWith :: Show a => Bool -> Bool -> Set a -> String

O(n). The expression (showTreeWith hang wide map) shows the tree that
implements the set. If hang is True, a hanging tree is shown otherwise a
rotated tree is shown. If wide is True, an extra wide version is shown.

Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5]

4

+--2

8.11. DEBUGGING 135

| +--1

| +--3

+--5

Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1..5]

4

|

+--2

| |

| +--1

| |

| +--3

|

+--5

Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1..5]

+--5

|

4

|

| +--3

| |

+--2

|

+--1

valid :: Ord a => Set a -> Bool

O(n). Test if the internal set structure is valid.

bin :: a -> Set a -> Set a -> Set a

balanced :: Set a -> Bool

join :: a -> Set a -> Set a -> Set a

merge :: Set a -> Set a -> Set a

136 CHAPTER 8. DATA.SET.BASE

Chapter 9

Data.StrictPair

module Data.StrictPair (

strictPair

) where

strictPair :: a -> b -> (a, b)

Evaluate both argument to WHNF and create a pair of the result.

137

138 CHAPTER 9. DATA.STRICTPAIR

Chapter 10

Dpfs.DavisPutnamFiniteSets

module Dpfs.DavisPutnamFiniteSets (

Atom(Xin, Calc), dpfs, dpfsAll, dpfsSat, dpfsSatAllSolutions,

findTrueFalse, resolveTrueFalse, findSimilarAtomUnits,

substituteSimilarUnits, findUnit’, resolveUnit, findPureLiteral,

resolvePureLiteral, findUnit’, resolveUnitCalculus, findSimpRule3,

resolveSimpRule3, findFalse_Calculus, resolveFalse_Calculus,

findSimpUnitCalculus, resolveCalculus1, findSelection2, setSplit2,

lookup’, setToInt, dpcnf, expectJust, toList’

) where

Implementation of two extensions of the DPLL algorithm (Davis-Putnam-Logemann-
Loveland)

First Extension:

Second Extension:

10.0.1 Datatype

data Atom

= Xin !Int !IntSet

| Calc !IntSet !IntSet

instance Eq Atom

instance Show Atom

139

140 CHAPTER 10. DPFS.DAVISPUTNAMFINITESETS

10.1 Davis-Putnam procedures

dpfs :: FiniteSet -> [Char] -> [Char]

dpfs function executes the following parts:

• parsing the formula

• cnf transformation

• dp procedure extension 1

dpfsAll :: Int -> [Char] -> [[(String, IntSet)]]

dpfsAll function executes the following parts:

• parsing the formula

• cnf transformation

• dp procedure extension 1 and tries to find all solutions

dpfsSat :: CalculusSwitch

-> FiniteSet -> KlauselMenge -> SolutionSet

dpfsSat function describes the procedure of the Davis-Putnam algorithm
and returns one solutions if one exists.

dpfsSatAllSolutions :: CalculusSwitch

-> FiniteSet -> KlauselMenge -> KlauselMenge

dpfsAllSolutions function describes the procedure of the Davis-Putnam
algorithm and returns all solutions if any exists.

10.2 Rules: 1st Extension

findTrueFalse :: Int -> KlauselMenge -> Maybe Atom

findTrueFalse runs through the clause set and returns an atom which can
be simplify.

resolveTrueFalse :: Int -> Atom -> KlauselMenge -> KlauselMenge

resolveTrueFalse simplfies the clause set for the given atom.

findSimilarAtomUnits :: Int -> KlauselMenge -> Maybe Atom

The findSimilarAtomUnits function interates through the clause set and
returns the first unit a.

10.3. RULES: 2ND EXTENSION 141

substituteSimilarUnits :: Atom -> KlauselMenge -> KlauselMenge

Add documentation here

findUnit’ :: KlauselMenge -> Maybe AtomTupel

The findUnit’ function return the first unit (a elem M’) from the clause
set if one exist.

resolveUnit :: AtomTupel -> KlauselMenge -> KlauselMenge

Add documentation here

findPureLiteral :: KlauselMenge -> Maybe AtomTupel

The findPureLiteral function returns the first pure literal.

resolvePureLiteral :: AtomTupel -> KlauselMenge -> KlauselMenge

The resolvePureLiteral builds up a new clause set while skipping clauses
which contains the pure unit.

10.3 Rules: 2nd Extension

findUnit’ :: KlauselMenge -> Maybe AtomTupel

The findUnit’ function return the first unit (a elem M’) from the clause
set if one exist.

resolveUnitCalculus :: AtomTupel -> KlauselMenge -> KlauselMenge

The resolveUnitCalculus function removes the given atom from the clause
set.

findSimpRule3 :: KlauselMenge

-> SolutionSet -> Maybe ((Int, IntSet), Atom)

The findSimpRule3 function runs through the clause set and returns an
Atom if any simplifications are possible for rule 3.

resolveSimpRule3 :: ((Int, IntSet), Atom)

-> KlauselMenge -> SolutionSet -> SolutionSet

The resolveSimpRule3 function updates the solutionSet for the given calc
atom

142 CHAPTER 10. DPFS.DAVISPUTNAMFINITESETS

findFalse_Calculus :: KlauselMenge -> Maybe Atom

The findFalse_Calculus find the first calc atom with one or both sets are
empty.

resolveFalse_Calculus :: KlauselMenge -> KlauselMenge

The resolveFalse_Calculus function runs through the clause set and re-
moves all atoms with one or both sets are empty.

findSimpUnitCalculus :: KlauselMenge

-> SolutionSet -> Maybe (Atom, SolutionSet)

The findSimpUnitCalculus function runs through the clause set and re-
turns an Atom if any simplifications are possible. (Rule 1 + 2)

resolveCalculus1 :: Atom

-> KlauselMenge -> SolutionSet -> KlauselMenge

The resolveCalculus function simplifies the clause set an returns the up-
dated clause set (Rule 1 + 2)

findSelection2 :: KlauselMenge -> SolutionSet -> Maybe Atom

The findSelection function returns an calc atom, if and only if this calc
atom is splitable into two pieces.

setSplit2 :: Atom -> KlauselMenge -> SolutionSet -> KlauselMenge

The setSplit function splits the passed calc atom into two ore more pieces.

10.4 Utilities

lookup’ :: Int -> [Atom] -> Maybe IntSet

The helper lookup’ function looks up a set of one literal a

setToInt :: Int -> SolutionSet -> Int

dpcnf :: FiniteSet -> Pexpr (Int, [Int]) -> KlauselMenge

expectJust :: Maybe a -> a

toList’ :: IntSet -> [Int]

Chapter 11

Dpfs.Parser

module Dpfs.Parser (

Pexpr(Ptrue,

Pfalse,

Pvar,

Pselem,

PSelem,

PvarElem,

Pnot,

Pand,

Por,

Pimpl,

Pequiv),

parseProp

) where

data Pexpr name

143

144 CHAPTER 11. DPFS.PARSER

= Ptrue

| Pfalse

| Pvar name

| Pselem name

| PSelem [Pexpr name]

| PvarElem (Pexpr name, Pexpr name)

| Pnot (Pexpr name)

| Pand [Pexpr name]

| Por [Pexpr name]

| Pimpl (Pexpr name) (Pexpr name)

| Pequiv (Pexpr name) (Pexpr name)

instance Eq name => Eq (Pexpr name)

instance Ord name => Ord (Pexpr name)

instance Show name => Show (Pexpr name)

parseProp :: [Char] -> Pexpr String

Chapter 12

Dpfs.Simp

module Dpfs.Simp (

cnf, cnffast, pelimequiv, pelimimpl, pelimnot, pelimTF, pelimTFR,

deleteAll, pelimflat, pelimflatr, porsublst, pandsublst, portop,

pandtop, cnfRemoveTaut, cnfRemoveTaut’, cnfRemoveTaut’’, numPropSubs,

pVarNumber, pVarNumberList, pSelemsToList, pSelemsToList’, showVar

) where

Substitute all occurrencies of propositional variables to numbers. Transforms
an propositional logic formula into an conjunctive normal form.

cnf :: Int -> Pexpr (Int, [Int]) -> Pexpr (Int, [Int])

cnf transformiert eine aussagenlogische Formel in eine Konjunktive Nor-
malform

cnffast :: Int -> Pexpr (Int, [Int]) -> Pexpr (Int, [Int])

cnffast transformiert eine aussagenlogische Formel in eine Konjunktive
Normalform (lineare CNF)

pelimequiv :: Pexpr (Int, [Int]) -> Pexpr (Int, [Int])

pelimequiv ersetzt quivalenzen innerhalb der Formel. (a = b) –¿ ((a =¿ b)
/“ (b =¿ a))

145

=

146 CHAPTER 12. DPFS.SIMP

pelimimpl :: Pexpr (Int, [Int]) -> Pexpr (Int, [Int])

pelimimpl ersetzt Implikationen innerhalb der Formel. (a =¿ b) –¿ (not
a) // b

pelimnot :: Int -> Pexpr (Int, [Int]) -> Pexpr (Int, [Int])

pelimnot ersetzt Vorkommen von (not Ptrue) bzw. (not Pfalse) zu Pfalse
bzw. Ptrue

pelimTF :: Pexpr (Int, [Int]) -> Pexpr (Int, [Int])

pelimTF lscht alle Vorkommen von Ptrue und Pfalse innerhalb der Formel.

pelimTFR :: Eq name => Pexpr name -> Pexpr name

deleteAll :: Eq a => a -> [a] -> [a]

pelimflat :: Pexpr (Int, [Int]) -> Pexpr (Int, [Int])

pelimflat fasst verschachtelte Und- und Oder-Verknpfungen zusammen.

pelimflatr :: Pexpr t -> Pexpr t

porsublst :: Pexpr t -> [Pexpr t]

pandsublst :: Pexpr t -> [Pexpr t]

portop :: Pexpr t -> Bool

pandtop :: Pexpr t -> Bool

cnfRemoveTaut :: Pexpr (Int, [Int]) -> Pexpr (Int, [Int])

cnfRemoveTaut lscht Klauseln: – indem Atome als Menge genau die fest-
gelegte Menge besitzen, und – indem ein Atom x mehrfach vorkommt und
die Mengen dieser Atome disjunkt sind.

cnfRemoveTaut’ :: (Eq a1, Eq a) => [Pexpr (a, [a1])] -> [Pexpr (a, [a1])]

cnfRemoveTaut’’ :: (Eq a, Eq a1) => [Pexpr (a, [a1])] -> Bool

numPropSubs :: Int

-> Pexpr String -> ([(String, Int)], Pexpr (Int, [Int]))

numPropSubs substituiert alle vorkommenden Variablen durch Int-Zahlen
und zustzlich wird der Typ PvarElem ersetzt durch Pvar. Das Ergebnis
ist ein Tupel aus dem Variablen-Bindungen zu den substituierten Zahlen
und der substituierte Liste selbst .

147

pVarNumber :: Int

-> (Int, [(String, Int)])

-> Pexpr String -> ((Int, [(String, Int)]), Pexpr (Int, [Int]))

pVarNumber substituiert alle vorkommenden Variablen durch Int-Zahlen
und ersetzt den Typ PvarElem durch Pvar (Num,Liste der Elemente).

pVarNumberList :: Int -> (Int, [(String, Int)]) -> ([Pexpr (Int, [Int])] -> Pexpr (Int, [Int])) -> [Pexpr String] -> ((Int, [(String, Int)]), Pexpr (Int, [Int]))

pSelemsToList :: Pexpr String -> [Int]

pSelemsToList’ :: [Pexpr String] -> [Int]

showVar :: Pexpr t -> t

148 CHAPTER 12. DPFS.SIMP

Chapter 13

Dpfs.SimpCnf

module Dpfs.SimpCnf (

Fresh, fastcnfInt, pcnf

) where

class Ord a => Fresh a

instance Fresh Char

instance Fresh Int

instance (Show a, Fresh a) => Fresh [a]

instance Fresh (Int, [Int])

fastcnfInt :: (Ord a, Fresh a, Show a) => Pexpr a -> Pexpr a

Add documentation here

pcnf :: (Ord a, Show a) => Pexpr a -> Pexpr a

149

	Control.DeepSeq
	Data.IntMap.Base
	Map type
	Operators
	Query
	Construction
	Insertion
	Delete/Update

	Combine
	Union
	Difference
	Intersection
	Universal combining function

	Traversal
	Map

	Folds
	Strict folds

	Conversion
	Lists
	Ordered lists

	Filter
	Submap
	Min/Max
	Debugging
	Internal types
	Utility

	Data.IntMap.Strict
	Strictness properties
	Map type
	Operators
	Query
	Construction
	Insertion
	Delete/Update

	Combine
	Union
	Difference
	Intersection
	Universal combining function

	Traversal
	Map

	Folds
	Strict folds

	Conversion
	Lists
	Ordered lists

	Filter
	Submap
	Min/Max
	Debugging

	Data.IntSet
	Strictness properties
	Set type
	Operators
	Query
	Construction
	Combine
	Filter
	Map
	Folds
	Strict folds
	Legacy folds

	Min/Max
	Conversion
	List
	Ordered list

	Debugging

	Data.IntSet.Base
	Set type
	Operators
	Query
	Construction
	Combine
	Filter
	Map
	Folds
	Strict folds
	Legacy folds

	Min/Max
	Conversion
	List
	Ordered list

	Debugging
	Internals

	Data.Map.Base
	Map type
	Operators
	Query
	Construction
	Insertion
	Delete/Update

	Combine
	Union
	Difference
	Intersection
	Universal combining function

	Traversal
	Map

	Folds
	Strict folds

	Conversion
	Lists
	Ordered lists

	Filter
	Submap
	Indexed
	Min/Max
	Debugging

	Data.Map.Strict
	Strictness properties
	Map type
	Operators
	Query
	Construction
	Insertion
	Delete/Update

	Combine
	Union
	Difference
	Intersection
	Universal combining function

	Traversal
	Map

	Folds
	Strict folds

	Conversion
	Lists
	Ordered lists

	Filter
	Submap
	Indexed
	Min/Max
	Debugging

	Data.Set.Base
	Set type
	Operators
	Query
	Construction
	Combine
	Filter
	Map
	Folds
	Strict folds
	Legacy folds

	Min/Max
	Conversion
	List
	Ordered list

	Debugging

	Data.StrictPair
	Dpfs.DavisPutnamFiniteSets
	Datatype
	Davis-Putnam procedures
	Rules: 1st Extension
	Rules: 2nd Extension
	Utilities

	Dpfs.Parser
	Dpfs.Simp
	Dpfs.SimpCnf

