
Goethe University, Frankfurt
Department 12: Computer Science and Mathematics

Institute of Computer Science

Master Thesis

Design and Implementation
of an HPSG Model Checker

using Polyadic Dynamic Logics

William B. Blacoe

Supervisor:
Prof. Dr. Manfred Schmidt-Schauß

Artificial Intelligence and Software Technology

June 30th, 2011

2

3

Abstract
We present an interactive graphical Java implementation of an
HPSG Model Checker. The Model Checker’s input consists of
a type hierarchy, a set of feature structured HPSG derivations
and a set of grammar principles. The feature structured mo-dels
are polyadic Kripke structures. Søgaard and Lange [2009] have
identified an extension of dynamic logic for such structures whose
model checking complexity is in P: Polyadic propositional dy-
namic logic. Formulas of this logic are used to express linguistic
constraints on the models. The input components are entered by
way of a GUI, including the ability to import LKB and TRALE
output structures. Type hierarchies and models can be viewed
and manipulated via graph visualisation. The evaluation of con-
sistency among formulas and models can be overtly analysed step
by step.

4

Contents

1 Introduction 7

1.1 HPSG . 7

1.2 Polyadic Propositional Dynamic Logic . 12

1.3 Complex examples . 14

1.3.1 Non-empty Phonology . 14

1.3.2 Subcategorisation Principle . 15

1.3.3 Phonology Principle . 16

1.3.4 Acyclicity . 17

1.4 Overview of Chapters . 18

2 Formal Definitions 19

2.1 HPSG Components . 19

2.2 Formulas and Programs . 20

2.3 Model Checking Algorithm . 22

3 Implementation of Main Components 27

3.1 Types and Type Hierarchies . 28

3.2 Kripke Structures: States, Tuples and Relations 29

3.3 Formulas . 29

3.4 Programs . 30

3.5 Model Checker . 31

4 Input and Output 35

4.1 Input from LKB and TRALE . 35

4.1.1 LKB . 35

4.1.2 TRALE . 37

4.2 Formula Parser . 42

4.3 XML Serialisation of Java objects . 44

5 Graph Visualisation 49

5.1 Prefuse Graph Visualisation . 49

5.2 Visualising Kripke Structures . 50

5.2.1 Data Transformations . 50

5.2.2 Visual Mappings . 51

5.2.3 View Transformations . 51

5.3 Visualising the Type Hierarchy . 52

5

6 CONTENTS

6 GUI 53
6.1 Project Tree . 53
6.2 Import and Export . 54
6.3 Theory . 54
6.4 Models . 55
6.5 Type Hierarchy . 57
6.6 Model Checker . 58

7 Conclusions 61

Chapter 1

Introduction

The language faculty of the human brain has been an ongoing field of research for decades.
As one of the cognitive sciences, linguistics has proven continually difficult to formalise and
understand analytically. Fortunately, other disciplines such as neuroscience and psychology
help in discovering and describing its workings. Computer science is another wonderful aid
in this endeavour. Its compatibility with linguistics comes from treating the human brain as
a computational device, a symbol manipulator. Thus, logical and mathematical descriptions
are applied to mental processes concerned with language production and comprehension. Put
simply, the former may be viewed as a parse from meaning to sound and the latter vice versa.

The present work is not concerned with parsing, but rather with model checking. Nev-
ertheless the notion of the latter is very much based on the former. In this introduction we
will first address natural language parsing by means of head-driven phrase structure grammar
(henceforth HPSG, Pollard and Sag [1994]). Next, the logics for analysing those structures
will be polyadic propositional dynamic logics (PPDL2), as put forth by Søgaard and Lange
[2009]. We will illustrate their interaction comprehensively with several examples. Finally,
we will name the further chapters in this work which will show us how the programming
language Java was used to implement our model checker.

The result will be a graphical tool for creating linguistic structures and formal gram-
mar principles which describe them. Their mutual consistency can then be calculated by
an efficient1 model checker. From a logical standpoint, they are consistent iff the defined
principles are valid in every state of those structures. Our tool makes this process and the
material involved transparent, due to a step-by-step analysis and a full visualisation. This
lends the program didactical value and an application for debugging and developing related
computer-linguistic software, e.g. a parser.

1.1 HPSG

We picked HPSG for dealing with computational-linguistic tasks because it has evolved in a
highly formalised fashion in the literature. HPSG has been used for creating formal theories
on human language syntax. But, in principle, it also allows for any other kind of information
to be encoded in its structures, including phonological, morphological, semantical or pragmat-
ical information. The attribute-value matrix (henceforth AVM) is the typical representation

1see Theorem 5.5 The model checking problem for PPDL2 is in P in Søgaard and Lange [2009] for the
formal proof.

7

8 CHAPTER 1. INTRODUCTION

of HPSG feature structures. In what follows we show several AVMs together with their corre-
sponding model to provide the reader with an immediate comparison (see chapter 5 for more
details on our visualisation of feature structures). This section explains HPSG principles via
AVMs, as is usual in HPSG literature, while section 1.2 works with the concurrent models.

To start out with an example, consider the AVM in figure 1.1 (left), which represents the
word “snores”. At the top the italic word tells us that this structure is of type word. Under-
neath that, its attributes PHON, SYN and SEM are listed (always upper-case), representing
respectively some very simple phonological, syntactic and semantic descriptions of “snores”.
Each attribute’s value (positioned to its right) is then a structure itself, i.e. either a type, a
list of structures, or an AVM. PHON’s value is a singleton list containing the type snores and
SYN’s value is an AVM of type syn, etc.

Figure 1.1: AVM for “snores” (left) and its corresponding model (right)

The phonological values in this chapter’s examples are simply a list of types in the order in
which they are spoken. Each is atomic, thus abbreviating its respective phonological material.
The head of a word is a category token indicating the word’s character. Number (NUM) and
person (PER) values are important for syntactic agreement. Each word may use the SUBCAT
attribute to specify a list of other structures it subcategorises or “fits with”. In this case, the
verb “snores” needs to go together with one word whose nature (or head) is noun.

But what are AVMs good for? Before we continue our introduction of HPSG, let us
motivate its use by remembering some classical approaches to syntax. Figure 1.2 shows a
classical derivation tree of the English sentence “Tim snores”. Its leaves are the words of the
sentence. Next, they are abstracted to their syntactical category (N for noun, V for verb).

1.1. HPSG 9

They then each constitute a phrase on their own, i.e. noun phrase (NP) and verbal phrase
(VP). These make up a full sentence (S), by means of the phrase structure rule S → NP VP.

Figure 1.2: A classical syntax tree for “Tim snores”

There are two views of this process. The first one is that we start out with the root
symbol S and successively apply phrase structure rules. When this process finishes we end
up with leaf nodes labelled with words which, when strung together from left to right, yield
a sentence. The second view taken is when we start out with the string of words and merge
them to internal phrase nodes using the same phrase structure rules “backwards”. If there
is a way of doing this which leads to a single sentence node S, the input is recognised as
grammatical or well-formed.

When parsing, though, we do more than just get a “yes” or a “no” to the question
whether an uttered sentence is well-formed. We translate it into a structure that represents
its meaning. When a human hears a sentence, she looks up the words she hears in her
mental lexicon. There she finds entries of so-called signs. A sign is an abstract collection of
information about the sound and meaning of a word, besides some further formal information.
Her brain then searches for a way to combine some set of signs in such a way that the
phonological value of the resulting complex sign equals the heard sentence. In the process
each sign’s semantic content gets “dragged along” so that the SEM value of the resulting sign
is the meaning of the uttered expression.

Figure 1.1 gives us the sign found in the lexicon for “snores” and figure 1.3 gives us the
one for “Tim”. A parser would now look for some other sign that serves as a mother sign
over the the two daughter signs just mentioned. We are not concerned here in what manner
this may be achieved. Rather, we are interested in making sure that the selected derivation
obeys all grammar rules. This is model checking. In this view, then, the rules describe
existing derivations rather than generating them. If all rules are satisfied, the derivation
is well-formed. To give some examples, consider sentences such as “Tim are snoring” and
“Tim takes”. The former is ruled out because its subject does not agree with its verb for
number, the latter because “takes” subcategorises at least two arguments, i.e. a subject and
an object. To formalise this, the NUM value for “are snoring” is plural and the SUBCAT
value for “takes” is 〈[SYN [HEAD noun]], [SYN [HEAD noun]]〉.

The mother sign that we are looking for is a phrase whose PHON value is the concatenation
of its daughters’ PHON values and whose HEAD value is identical with that of its head-
daughter. Furthermore, it must not subcategorise any signs, i.e. it must expect no merges
with further signs. Figure 1.4 shows an AVM with the minimal attributes required of a mother

10 CHAPTER 1. INTRODUCTION

Figure 1.3: AVM for “tim” (left) and its corresponding model (right)

sign over “tim” and “snores”.

Figure 1.4: AVM for “tim snores” (root sign only)

Now, to display a full derivation, we form a tree made of all signs from the lexicon together
with the found mother signs. All mother-daughter relationships are also encoded simply by
adding the attributes HEAD-DTR (head-daughter) and DTRS (daughters) to each mother
sign. The resulting structure is in figure 1.5.

This is the entire derivation in one structure. The squared numbers are so-called tags.
Tags with the same numbers indicate structure sharing (also known as re-entrancy), i.e. more
than one path (of features) leading to the same sub-structure. Thus, the structure of AVMs is
not necessarily tree-like. HPSG structures may even potentially contain cycles. Depicting an
AVM as a graph is therefore very useful. In figure 1.5 these re-entrancies are a consequence of
unifying the structures for the verb and its subject. The derivation’s graph makes structure
sharing even more obvious: different edge paths lead to the same node. The graph’s nodes or

1.1. HPSG 11

Figure 1.5: AVM for the full derivation of “tim snores” (left) and its corresponding model
(right)

states are labelled with types, and its edges are labelled with names of attributes, also called
features.

Another typical component of HPSG is the type hierarchy. It defines what types exist,
what features they (are allowed to) have and what their inheritance relations are. This may
be summarised in a graph such as that in figure 1.6.

This type hierarchy contains only what is necessary for our little example of “Tim snores”.
tim and snores are types that have the super-type phon in common. word and phrase are
both sub-types of sign. We see that sign has three appropriate features: PHON, SYN and
SEM because they are listed in the same node. Each feature specifies its value type. This
can be any type in the hierarchy, it does not have to be a leaf type. Sub-types inherit these
features and may even further specify their value types. PHON expects either phon or any of
its sub-types as its value in all models based on this type hierarchy. i and j are variables for
some referent; s and t are situation variables for some situation semantics. They, too, can be
treated as types. They have the super-type index in common. The type that generalises over
all other types is the top type top. It must have no super-type.

While type hierarchies typically act as an ontology for HPSG models, in our program

12 CHAPTER 1. INTRODUCTION

Figure 1.6: A type hierarchy for our examples

the user is free to build models independent of this notion. Since there are many ways
of interpreting such an ontology, we leave it for the user to decide the restrictions placed
thereby. One example is feature appropriateness: Are type t’s features allowed for t, or
actually necessary? Another example is this: Must each model state contain a leaf type or
are generalised (i.e. non-leaf) types also allowed? These restrictions and many more can be
expressed by virtue of PPDL2 formulas.

1.2 Polyadic Propositional Dynamic Logic

Besides the type hierarchy and models there is one more input: A theory, i.e. a set of formulas
which must be satisfied by the models in order for these to be declared well-formed. We
employ a version of polyadic propositional dynamic logics (henceforth PPDL), as introduced
in Søgaard and Lange [2009]. There is a more expressive and a less expressive version of
this. The latter was coined PPDL2. It cannot describe as many linguistic phenomena as the
former, but it nevertheless is an attractive compromise because of its efficiency: the model
checking problem is in P. That is, given a type hierarchy, a model and a PPDL2 formula, the
question whether the formula is satisfied by the model based on this type hierarchy can be
answered deterministically in polynomial time.

1.2. POLYADIC PROPOSITIONAL DYNAMIC LOGIC 13

Before we work with the models that appeared in the above figures, let us consider their
nature: They are polyadic Kripke structure, i.e. graphs with labelled nodes (states) and
labelled edges, including hyper-edges. A hyper-edge has only one label, but it can point
to several successor states “at the same time” (see figure 1.7(d)). It may also point to no
successor states (see figure 1.7(b)). This is different from a state without the feature (see
figure 1.7(a)). A non-list edge, as in figure 1.7(c), is equivalent with a hyper-edge that points
to exactly one state.

In our graph visualisations we simulate a hyper-edge via a so-called list node and its
outgoing list edges. The list node is labelled with the amount of value states written in
angled brackets. The n list edges are labelled with the numbers from 1 to n, thus marking
their order in the represented list. A list node may not have another list node as a value
state.

Figure 1.7: Basic Kripke structures. a) A state with no successor, b) A state with an empty
list as PHON value, c) A state with on PHON-successor, d) A state having as its PHON-
successor a list containing two states

Let’s look at some simple PPDL2 formulas that are applicable to these models. The
simplest of formulas contains nothing more than a type, e.g. word. The formula word is
satisfied in state 0 by the models (a), (b) and (c) in figure 1.7. For model (d) this is not the
case because here state 0 contains the distinct type phrase. In fundamental dynamic logics
diamond formulas such as ♦φ describe a state to have a successor state which fulfills the
sub-formula φ. Box formulas like �φ assert that all successor states satisfy φ. This is appli-
cable to graphs whose edges are unlabelled and not hyper-edges. Since we are dealing with
graphs with those properties, though, PPDL2 allows diamonds and boxes (i.e. modalities) to
contain the feature that is to be considered, and after the modality may come an arbitrary
amount of sub-formulas. Thus 〈PHON〉(tim) is satisfied in states which have an outgoing
edge labelled PHON that points to a state labelled with type tim, e.g. state 0 in model
(c) but not in the other three models. Instead, state 0 in models (b) and (d) respectively
satisfy 〈PHON〉() and 〈PHON〉(tim, snores). With this intuition, we can now consider the
propositional logics among types and the construction of more complex diamonds (also called
diamond modalities).

Types are the propositional variables that formulas mention. Features appear in formulas
as modal operators. Our formulas do not use the existential or universal quantification found
in first order predicate logics. Instead they only ever affect a strictly local part of the model2.
That is, a state satisfies a formula iff it and the referred-to states in its vicinity fulfill the

2With perhaps the exceptions of ε and ∗

14 CHAPTER 1. INTRODUCTION

expressed requirements. Since the size of a formula is constrained, the number of states that
are considered in the formula’s evaluation is also constrained.

We make mention of a state’s neighbouring state by using the connecting feature in a
diamond modality. (syn → 〈HEAD〉(verb∨noun)), for example, says that if a state is of type
syn its HEAD-successor must fulfill the formula (verb ∨ noun), i.e. it must be of type verb or
noun. We call HEAD a program, in this case an atomic program because it is only a feature.
This is one way to express the need for appropriateness, as given in the type hierarchy, i.e. it
is appropriate for syn to have pos (part of speech) as HEAD feature, and pos in turn may be
verb or noun. It is typical for HPSG rules to be implications because they constrain the way
in which derivations may behave. These constraints are often based on the (sub-)derivation’s
root type.

1.3 Complex examples

The following are some examples of more complex formulas and their evaluation. Here we
cover all modal operators provided by PPDL2. These explanations are semi-formal. If the
reader choses, she may already consult chapter 2 for the precise definitions.

1.3.1 Non-empty Phonology

We demand that every sign have a non-empty phonological representation using (sign →
〈elem(PHON)〉(>)). This is an implication regarding sign. Since word and phrase are
sub-types of sign, all states containing either of these types must fulfill the subformula
〈elem(PHON)〉(>). This formula’s diamond contains a non-atomic prorgram.

To explain its denotation step by step, let us consider all appearances of the PHON feature
in figure 1.5’s model: states 13 and 1 each point directly to a phon state (i.e. tim and snores,
respectively). But state 0 points to a list node which in turn has two phon value states. To
indicate their order, the edges are numbered 1 and 2. Internally the polyadic Kripke structure
saves this particular data in the form of a relation. For every feature f it contains a polyadic
relation Rf . The tuples therein tell us what state points to what states. In our current model
we have RPHON = {(13, 4), (1, 5), (0, 4, 5)}. Each tuple’s first state (the so-called initial state)
is where its edge labelled PHON originates, and all further states in that tuple (the non-initial
states) are what this edge points to, either directly or via a list node. If the tuple is binary
the logics and the visualisation make no difference of whether this might express a singleton
list value or a non-list value. All tuples containing only an initial state or more than one
none-initial state are linked up in the model graph via a list node.

Because 〈elem(PHON)〉(>) is formulated in ignorance of the denoted relation’s arity we
need to make use of the elem operator. It makes all tuples with more than one non-initial
state binary. Singleton tuples are discarded and binary tuples stay the way they are. That
is, tuples like (x, y) are unaffected, while tuples such as (x, y1, ..., yn) are split up into binary
tuples that all share the source state x: (x, y1), ..., (x, yn). This relation is considered virtual
because it is not necessarily found in the model. These newly formed tuples are only part of
the evaluation and not the original derivation. Now that we have computed the program’s
denotation, we can check every state s whether it contains a tuple that originates in s and
points to some state that satisfies the formula >. Since > is satisfied in every state, we are
thus demanding that s have a PHON feature and that it be non-empty. If so, this formula is
evaluated as true in s. Because of our original implication (sign → 〈elem(PHON)〉(>)), the

1.3. COMPLEX EXAMPLES 15

explained sub-formula only needs to be satisfied in all word, phrase and sign states. All other
states trivially satisfy the implication.

1.3.2 Subcategorisation Principle

Figure 1.8: HPSG-like syntax tree of “Emma gives Hector milk”. Each node abbreviates a
sign, mentioning its syntactic category and phonology.

(phrase →
〈elem(((HEAD-DTR; SYN), SUBCAT, NON-HEAD-DTR) ∩ (SYN; SUBCAT))〉(>)
∨
〈(((HEAD-DTR; SYN), SUBCAT, NON-HEAD-DTR) ∩ (SYN; SUBCAT))〉()

)

Figure 1.9: Subcategorisation Principle

The subcategorisation principle describes the mother-daughter relationship of signs, i.e.
verbs might subcategorise nouns, noun phrases, prepositional phrases; nouns might subcat-
egorise determiners, etc. As all the nouns in our current examples are either proper nouns
or mass nouns, they each subcategorise nothing. Thus, for every word state whose SYN-
successor has a HEAD value of noun, that state’s SYN-successor has an empty list as its
SUBCAT value. In word states whose SYN-successor has a HEAD value of verb, on the other
hand, that SYN-successor usually specifies a SUBCAT value list of at least one sign, namely
the subject of that sentence.3

In our examples we have assumed a binary branching among mother and daughter signs.
Each mother has a head-daughter and a non-head-daughter. The former is what gives the
mother its character, the latter is an argument which the head-daughter subcategorises. Since
the mother now “incorporates” that argument daughter, it inherits the SUBCAT list from its
head-daughter with the exception that the non-head-daughter is subtracted from the list.

The complement operator 	 is used to express this subtraction. It has three arguments:
(1) a path leading to a certain state, here (HEAD-DTR; SYN), (2) a feature of that state,
here SUBCAT, and (3) a sub-program describing what value is to be subtracted from the

3There are exceptions such as sentences with an intransitive verb in the imperative form, e.g. “Leave!”.

16 CHAPTER 1. INTRODUCTION

feature’s value. Let us evaluate the formula for the subcategorisation principle step by step
in the model that would correspond to the tree in figure 1.8 (not shown). The sign “gives”
specifies a SUBCAT list refering to its three arguments “emma”, “hector”, “milk” in that
order. When it combines with “hector”, the resulting phrase’s SUBCAT list must be “emma”,
“milk”. When that sign combines with “milk”, their mother’s SUBCAT list now only contains
“emma”. Finally, after the sign for the subject “emma” is merged, the root sign has an empty
SUBCAT list. Each time the list resulting from subtracting a phrase’s non-head-daughter
from its head-daughter’s SUBCAT list must be identical to that phrase’s SUBCAT list. This
identity of values is expressed, as before, by an intersection.

In the first and second subtraction the list that should appear in the intersection’s deno-
tation contains two signs and one sign, respectively. To deal with lists of any length, we apply
the elem operator here. Therefore, if there was a list with more than one state they are split
up into separate non-list edges as described earlier, and the diamond-subformula is true. If
the intersection’s denotation is an empty relation, so is that of the elem operator, and the
diamond-subformula is false. The latter subtraction results in an empty list. In the model
this is represented by a singleton tuple, i.e. there is only a source state and no value states.
This would also falsify our principle’s first diamond-formula. Hence, we added a disjunct
with a very similar diamond-formula. This one has no elem operator as it is only meant for
the special case of finding empty SUBCAT lists. The round brackets after the diamond are
empty, which is why this diamond-formula is only fulfilled if its program’s denotation contains
at least one singleton tuple.

1.3.3 Phonology Principle

The phonology principle also deals with lists. Each sign’s PHON value tells us how it is
spoken. In our example derivation the PHON list of a mother is simply the concatenation of
its daughters’ PHON lists. Theories of word order deal with the problem of the order in which
such lists concatenate. We will not deal with this problem here. Instead, using the formula
in figure 1.10, we will just check whether a mother’s PHON value is indeed the concatenation
of that of its daughters in either order.

(phrase → (
〈elem((PHON ∩ app(HEAD-DTR, PHON, NON-HEAD-DTR, PHON)))〉(>)
∨
〈elem((PHON ∩ app(NON-HEAD-DTR, PHON, HEAD-DTR, PHON)))〉(>)

))

Figure 1.10: Phonology Principle

The app operator appends a list to another list. Its first and third arguments are paths
originating in the same state. Its second and fourth arguments are features respectively
pointing to the first and second list in question. Since paths are deterministic (see definition
7), the lists to be concatenated are unique if they exist in the model. Say the tuple representing
the first list is (x, y1, ..., yn), and the tuple representing the second list is (x, z1, ..., zm). The
second is appended to the first resulting in (x, y1, ..., yn, z1, ..., zm).

Again we use intersection and elem in a diamond-formula to check whether the two de-
scribed lists are identical. As we assume no empty PHON lists, there is no need for a
sub-formula covering this case. Rather there are two very similar diamond-formulas in a

1.3. COMPLEX EXAMPLES 17

disjunction, allowing for a concatenation in either order. This is necessary for models such
as “emma gives hector milk”, because with “gives hector” and “gives hector milk” the non-
head-daughter’s PHON list is appended to that of the head-daughter, and with “emma gives
hector milk” vice versa.

1.3.4 Acyclicity

Another interesting property of models we can check is whether they contain any cycles.
This may be deemed a meta-linguistic property, but we can nonetheless express it using the
formula in figure 1.11. Inside this formula the so-called empty formula ε appears. It denotes
a relation containing a tuple (s, s) for every state s in the model.

¬〈(
(((HEAD-DTR ∪ NON-HEAD-DTR)∗ ; HEAD-DTR)
∪

((HEAD-DTR ∪ NON-HEAD-DTR)∗ ; NON-HEAD-DTR))
∩ ε)〉(>)

Figure 1.11: Acyclicity Formula

This formula is fulfilled iff there are no cycles with regards to mother-daughter relation-
ships. The star operator denotes the reflexive-transitive closure of its argument relation.
It is limited, though, in that it only operates on binary tuples. Its sub-program may also
only be the empty program, an atomic program or the union of atomic programs. PPDL2

union also only regards binary tuples. Since we assume mother-daughter branchings to be
binary, all HEAD-DTR tuples and NON-HEAD-DTR tuples are binary. The sub-program
((HEAD-DTR ∪ NON-HEAD-DTR)∗ ; HEAD-DTR) denotes all paths over HEAD-DTR and
NON-HEAD-DTR edges, finishing with a HEAD-DTR edge. The first sub-program composed
with this one via ∪ denotes all such paths finishing with a NON-HEAD-DTR edge. The in-
tersection then determines whether any of these paths are reflexive (i.e. (s, s) for some state
s). There is a cycle iff this is so. The negation in front of the diamond sub-formula then
inverts this value.

Any model whose mother-daughter projection is truly tree-like will thus fulfill this acyclic-
ity formula. Figure 1.12 shows a model that does not. Due to the cycle in it, all three states
falsify the formula.

Figure 1.12: A simple model containing a cycle w.r.t. daughter-mother relationships

The only program operator that did not appear in our examples is u. It is called
intersection-in-a-point, has two arguments and is written infix. It compares every tuple
in the first argument relation with every tuple in the second argument relation. In contrast

18 CHAPTER 1. INTRODUCTION

to the usual intersection, which only maintains tuples of the same length which contain the
same states in the same positions, this intersection-in-a-point includes a binary tuple (x, t)
for every combination of input tuples (x, y1, ..., t, ..., yn) and (x, z1, ..., t, ..., zm) it compares.
The elem operator is therefore actually a special case of intersection-in-a-point: elem(α) is
equivalent to (α u α).

1.4 Overview of Chapters

Having introduced our approach to linguistic materials and their descriptions, we can now
implement a systematic processing tool for them. We use Java for this implementation. The
object-oriented paradigm lets us represent types, type hierarchies, states, tuples, relations,
models, formulas, programs, etc. as objects that interact and incorporate each other. Chap-
ter 2 makes our formal notion of all involved components precise. Chapter 3 explains our
implementation of those components and the model checker itself. The parsers involved in
making it possible to import HPSG material from LKB and TRALE, and exporting projects
to XML are detailed in chapter 4. The graph visualisations are made possible by the prefuse
Java package. Chapter 5 gives an overview of the steps involved. Chapter 6 then serves as
a documentation on how to use the Model Checker program, and chapter 7 concludes our
dealings with HPSG model checking.

Chapter 2

Formal Definitions

Most of the following definitions have been adopted from Søgaard and Lange [2009], but have
been repeated here for convenience. Note that there are slight variations in notation, though.

2.1 HPSG Components

Definition 1 Signature

A signature Σ = 〈T, F 〉 is a binary tuple where

• T is the set of all types.

• F is the set of all features.

Definition 2 Polyadic Kripke Structure

A polyadic Kripke structure (or model) M = 〈S, {Rf | f ∈ F}, V 〉 over the signature Σ =
〈T, F 〉 is a 3-tuple where

• S is the set of states.

• the second component is the set of polyadic relations Rf ⊆ Rallowed, one assigned to
each feaure f in F . We define Rallowed = {(s, t1, ..., tn) | n ∈ {0, ..., |S|} and s, t1, ..., tn ∈
S and ∀i = 1, ..., n : ∀j = 1, ..., i − 1 : ti 6= tj} to be the set of all tuples of length at
least 1 and at most |S|+ 1 in which all non-initial states, if there are any, are distinct.

This restriction is motivated by reasons of tractability. In the literature alternative
HPSG structures are allowed to contain sets of states. In our models sets are somewhat
simulated by lists containing no duplicates among their non-initial states. There also
seems to be no linguistic motivation to give a state a value list with multiple reference
to the same state.

• V : S → T is a valuation function assigning each state its type.

Definition 3 Type Hierarchy

A type hierarchy Th = 〈Ist ,Appr〉 over the signature Σ = 〈T, F 〉 is a binary tuple where

19

20 CHAPTER 2. FORMAL DEFINITIONS

• Ist : T → P(T) is a function mapping every type t to the set of all immediate super-
types of t, where P(T) is the power-set of T . By extension, Ist∗ : T → P(T) is the
function mapping each type to the set of all its super-types.

Formally: Ist∗(t) = {t} ∪
⋃

t′∈Ist(t)

Ist∗(t′).

The function Ist must not allow cycles in the hierarchy, i.e. t /∈ Ist∗(t) must hold for
all t ∈ T . Furthermore, the type hierarchy must be connected in such a manner that
there is exactly one type with no super-type. This is considered the top type.

• Appr : T × F → T is a partial function, with Appr(t, f) = t′ defining that f is an
appropriate feature for t and selects t′ as its value type.

2.2 Formulas and Programs

Definition 4 Syntax of Fomulas and Programs

Let Σ = 〈T, F 〉 be a signature. t is some type in T and f is some feature in F . Formulas
(φi) and programs (αi, βi, γi) over Σ are constructed as follows:

φ1, φ2, ..., φn → t | ¬φ1 | (φ1 ∧ φ2) | (φ1 ∨ φ2) | (φ1 → φ2) | (φ1 ↔ φ2)

| 〈α1〉(φ1, ..., φn) | [α1](φ1, ..., φn) | > | ⊥
α1, α2 → ε | f | (α1 ∩ α2) | (α1 ∪ α2) | (α1; f) | β∗1 | (α1 u α2)

| 	 (γ1, f, α1) | app(γ1, γ2, γ3, γ4) | elem(α1)

β1, β2 → ε | f | (β1 ∪ β2)

γ1, γ2, γ3, γ4 → ε | f | (γ1; f)

Following a diamond or box comes a finite sequence of 0 or more sub-formulas in round
brackets. We will refer to the set of all well-formed programs and formulas over Σ as ProgsΣ

and FormulasΣ, respectively.

Definition 5 Normal Form of Formulas

Let Σ = 〈T, F 〉 be a signature. For every PPDL2 formula φ there is an equivalent PPDL2

formula φ′ = N(φ) in normal form. N : FormulasΣ → FormulasΣ is defined as follows:

N(φ) =

φ if φ ∈ T ∪ {>}
¬N(ψ) if φ = ¬ψ
(N(ψ1) ∧N(ψ2)) if φ = (ψ1 ∧ ψ2)

¬(¬N(ψ1) ∧ ¬N(ψ2)) if φ = (ψ1 ∨ ψ2)

¬(N(ψ1) ∧ ¬N(ψ2)) if φ = (ψ1 → ψ2)

if φ = (ψ1 ↔ ψ2)

〈α〉(N(ψ1), ..., N(ψn)) if α ∈ ProgsΣ and φ = 〈α〉(ψ1, ..., ψn)

¬〈α〉(¬N(ψ1), ...,¬N(ψn)) if α ∈ ProgsΣ and φ = [α](ψ1, ..., ψn)

¬> if φ = ⊥

2.2. FORMULAS AND PROGRAMS 21

Definition 6 Semantics of Programs

Let M = 〈S, {Rf | f ∈ F}, V 〉 be a polyadic Kripke structure over the signature Σ = 〈T, F 〉.
The semantics Rf of features f ∈ F , i.e. atomic programs, are given in the model, whereas
the semantics Rα of complex programs α ∈ ProgsΣ\F are obtained recursively in the following
manner:

Rε = {(s, s) | s ∈ S}
R(α1 ∩α2) = Rα1 ∩Rα2

R(α1 ∪α2) = {(s, t) ∈ S2 | (s, t) ∈ Rα1 or (s, t) ∈ Rα2}
R(α1 ;α2) = {(s, t1, ..., tn) ∈ Rallowed | ∃(s, s′) ∈ Rα1 and (s′, t1, ..., tn) ∈ Rα2}

Rα∗ = {(s, t) ∈ S2 | ∃s0, ..., sn : ∀i = 1, ..., n : (si−1, si) ∈ Rα
and s = s0, t = sn}

R(α1 uα2) = {(s, s′) | ∃(s, t1, ..., tn) ∈ Rα1

and ∃(s, u1, ..., um) ∈ Rα2 ,∃i, j : s′ = ti = uj}
R	(α1,α2,α3) = {(s, t1, ..., ti−1, ti+1, ..., tn)

| ∃(s, s′) ∈ Rα1 , ∃(s′, t1, ..., tn) ∈ Rα2 , ∃(s, ti) ∈ Rα3}
Rapp(α1,α2,α3,α4) = {(s, t1, ..., tn, u1, ..., um) ∈ Rallowed

| (s, s′) ∈ Rα1 , (s
′, t1, ..., tn) ∈ Rα2 ,

(s, s′′) ∈ Rα3 , (s
′′, u1, ..., um) ∈ Rα4}

Relem(α) = R(αuα)

Definition 7 Deterministic Relations

Let S = {s1, ..., sn} be a set of states, and let R be a polyadic relation over S so that all
tuples in R contain at least one state. R is considered deterministic iff for every state s ∈ S
there is at most one tuple in R whose first state is s.

Definition 8 Semantics of Formulas

Let Th = 〈Ist ,Appr〉 be a type hierarchy and M = 〈S, {Rf | f ∈ F}, V 〉 a polyadic Kripke
structure over the signature Σ = 〈T, F 〉. Before a formula φ is evaluated it is normalised
to φ′ which is constructed only of >, the types t in T , negation, conjunction and diamond
modalities. Thus, for some s ∈ S:

M, s � >
M, s � t ⇔ t ∈ Ist∗(V (s))

M, s � (φ1 ∧ φ2) ⇔ M, s � φ1 and M, s � φ2

M, s � ¬φ ⇔ M, s 2 φ
M, s � 〈α〉(φ1, ..., φn) ⇔ ∃s1, ..., sn ∈ S : (s, s1, ..., sn) ∈ Rα and ∀i = 1, ..., n : M, si � φi

If M, s � φ we say that φ is satisfied by M in state s. In addition, if ∀s ∈ S : M, s � φ we

say that φ is satisfied by M , or M � φ. The question M
?
� φ is called the model checking

problem or model checking question.

22 CHAPTER 2. FORMAL DEFINITIONS

Furthermore, if a theory Φ = {φ1, ..., φn} is satisfied by a model M we write M � Φ.
This is the case iff ∀φ ∈ Φ : M � φ. Upon extending this matter to a collection of models
M = {M1, ...,Mm} we can assert that such a collection satisfies a theory Φ, that is M � Φ,
iff ∀M ∈M : M � Φ.

2.3 Model Checking Algorithm

Definition 9 Model Checking Algorithm

The algorithm presented on the following pages solves the model checking problem. It consists
of several procedures, some of which are recursive. The check procedure is the main procedure
which makes use of all further procedures to answer the model checking question.

The input consists of a type hierarchy Th = 〈Ist ,Appr〉 and a polyadic Kripke structure
M = 〈S, {Rf | f ∈ F}, V 〉, both over the signature Σ = 〈T, F 〉, and a PPDL2 formula φ. M
satisfies φ iff calling the check -procedure returns true. The following commentary gives an
informal overview of the algorithm’s steps, after which the algorithm itself is explicated.

For every state s ∈ S we maintain a set of formulas labelss as a global variable. That is,
labelss contains all formulas that s is labelled with. In the end this is exactly the set of all
sub-formulas of φ′ which are satisfied by M in s, where φ′ is the normalised version of φ.

The label sets start out empty. Initally they are filled with all atomic formulas that their
respective state satisfies via the addAtomicLabels procedure, i.e. the state’s type and all its
super-types as specified by Th. Of course, every state also satisfies the formula >. Next,
the recursive addComplexLabels procedure revursively traverses φ′ bottom-up. As it does
so, all encountered sub-formulas satisfied by any state s are added to labelss. Dealing with
negations and conjunctions is straightforward. But if a diamond formula is encountered, its
sub-program’s denotation is calculated explicitely by the computeRelation procedure. This
procedure is the explicite deterministic version of what happens in definition 6. The computed
relation is then inspected to see which tuples contain states in which the diamond formula’s
respective sub-formulas are satisfied. The idea of labelling states with sub-formulas in this
manor is based on a labelling algorithm described in Blackburn and van Benthem [1988].

After the traversal and labelling have been completed all label sets are inspected to see if
they contain φ′. Iff this is the case, M satisfies φ′. Since φ is equivalent to φ′, iff all label sets
contain φ′, M satisfies φ.

2.3. MODEL CHECKING ALGORITHM 23

procedure check():
φ′ := normaliseFormula(φ)
addAtomicLabels()
addComplexLabels(φ′)
isSatisfied = true
for all s ∈ S:

if φ′ /∈ labelss then
isSatisfied = false
exit for

return isSatisfied

procedure normaliseFormula(φ):
return N(φ), where N is the normalisation function from definition 5

procedure addAtomicLabels():
for all s ∈ S:
t := V (s)
labelss := labelss ∪ {t,>} ∪ getIstSet(t)

procedure getIstSet(t):
for all t′ ∈ Ist(t):

istSet := istSet ∪ getIstSet(t′)
return istSet

procedure addComplexLabels(φ):

if φ = ¬ψ then
addComplexLabels(ψ)
for all s ∈ S:

if ψ /∈ labelss then
labelss := labelss ∪ {φ}

if φ = (ψ1 ∧ ψ2) then
addComplexLabels(ψ1)
addComplexLabels(ψ2)
for all s ∈ S:

if ψ1 ∈ labelss and ψ2 ∈ labelss then
labelss := labelss ∪ {φ}

24 CHAPTER 2. FORMAL DEFINITIONS

if φ = 〈α〉(ψ1, ..., ψn) then
for i = 1 to n:

addComplexLabels(ψi)
R = computeRelation(α)
for all (s1, ..., sm) ∈ R:

if m = n+ 1 then
allLabelsExist = true
for i = 1 to n:

if ψi /∈ labelssi+1 then
allLabelsExist = false
exit for

if allLabelsExist = true then
labelss1 := labelss1 ∪ {φ}

procedure computeRelation(α):

if α ∈ F then:
return Rα

if α = ε then
R := ∅
for all s ∈ S:
R := R ∪ (s, s)

return R

if α = (δ1 ∩ δ2) then
R1 := computeRelation(δ1)
R2 := computeRelation(δ2)
R := ∅
for all t1 ∈ R1:

for all t2 ∈ R2:
if t1 = t2 then
R := R ∪ {t1}

return R

if α = (δ1 ∪ δ2) then
R1 := computeRelation(δ1)
R2 := computeRelation(δ2)
R := ∅
for all (s1, ..., sn) ∈ R1:

if n = 2 then
R := R ∪ {(s1, ..., sn)}

for all (s1, ..., sn) ∈ R2:
if n = 2 then
R := R ∪ {(s1, ..., sn)}

return R

2.3. MODEL CHECKING ALGORITHM 25

if α = (δ1; δ2) then
R1 := computeRelation(δ1)
R2 := computeRelation(δ2)
R := ∅
for all (s1, s2) ∈ R1:

for all (t1, ..., tn) ∈ R2:
if s2 = t1 then
R := R ∪ {(s1, t2, ..., tn)}

return R

if α = δ∗ then
R′ := computeRelation(δ)
R := ∅
for all s ∈ S:
R := R ∪ {(s, s)}

for all (s1, ..., sn) ∈ R′:
if n = 2 then
R := R ∪ (s1, s2)

for all s ∈ S:
for all t ∈ S:

for all u ∈ S:
if (t, s) ∈ R and (s, u) ∈ R then
R := R ∪ {(t, u)}

return R

if α = (δ1 u δ2) then
R1 := computeRelation(δ1)
R2 := computeRelation(δ2)
R := ∅
for all (s1, ..., sn) ∈ R1

for all (t1, ..., tm) ∈ R2

if s1 = t1 then
for i = 2 to n:

for j = 2 to m:
if si = tj then
R := R ∪ {(s1, si)}

return R

if α = 	(δ1, δ2, δ3) then:
R1 := computeRelation(δ1)
R2 := computeRelation(δ2)
R3 := computeRelation(δ3)
R := ∅
for all (s1, s2) ∈ R1

for all (t1, ..., tn) ∈ R2

for all (u1, u2) ∈ R3

if s1 = u1 and s2 = t1 then:
for i = 2 to n:

if ti = u2 then:
R := R ∪ {(s1, t2, ..., ti−1, ti+1, ..., tn)}

return R

26 CHAPTER 2. FORMAL DEFINITIONS

if α = app(δ1, δ2, δ3, δ4) then
R1 := computeRelation(δ1)
R2 := computeRelation(δ2)
R3 := computeRelation(δ3)
R4 := computeRelation(δ4)
R := ∅
for all (s1, s2) ∈ R1

for all (t1, ..., tn) ∈ R2

for all (u1, u2) ∈ R3

for all (v1, ..., vm) ∈ R4

if s1 = u1 and s2 = t1 and u2 = v1 then
R := R ∪ {(s1, t2, ..., tn, v2, ..., vm)}

return R

if α = elem(δ) then
return computeRelation(δ u δ)

Chapter 3

Implementation of Main
Components

Figure 3.1: The main components and their interaction

This chapter details our Java implementation of the main components: Type hierarchy,
polyadic Kripke structure, formula and model checker. Figure 3.1 outlines their relation-
ship. The notion of a signature is not implemented as such. The components mentioned here
are not restricted to a given collection of types and features. Rather they may refer to types
not covered by the type hierarchy, or to features which have no relation assigned to them by
the Kripke structure.

In our implementation no main component maintains any pointers to another. They are
separate objects making mention of common types and features, but only by naming them
using Strings rather than by reference. Keeping the main components isolated like this adds
to their robustness and interchangeability. During the model checking procedure they come
together. If, at this point, a model’s state has a type that is not in the type hierarchy, this
does not hinder the procedure. It just means that that state can satisfy no other formulas
except its own type and >. Similarly, if a formula mentions a feature without any assigned
relation in the model, that feature’s semantics will be ∅.

27

28 CHAPTER 3. IMPLEMENTATION OF MAIN COMPONENTS

Internally in the main components there are many data structures which employ hash
tables, like HashMap<T1, T2> and HashSet<T>. These are generic data types, where T1,
T2 and T can be replaced by any Java type. A type hierarchy, for example, polymorphically
instantiates its attribute Map<String, Type> by a HashMap<String, Type>, so that Strings
function as keys, each of them pointing to a Type. This data structure may thus be considered
a dictionary or an associative array.

Attention must be paid to the hashCode() method for objects that are used as keys in a
HashMap or HashSet. When two such objects have the same content, they are still separate
instances of their respective class, and thus by convention produce different hash codes. The
program can be forced to consider them as equal by overriding the hashCode()-method,
though. For Formulas and Programs the new method requires a compositional calculation of
that hash code, i.e. each formula’s or program’s hash code is the product of a fixed factor
combined with the hash codes of all sub-formulas and sub-programs.

3.1 Types and Type Hierarchies

To distinguish between a type in a type hierarchy and a type in a Java program, we will call
the latter Java type and print Java types and Java code, in a different font, e.g. String. To
represent types we created the class Type with the attributes

private String typeName;

private Set<Type> istSet;

private Map<String, Type> featureMap;

In our formal definition of type hierarchies, we let the type hierarchy Th = 〈Ist ,Appr〉 govern
the inheritance relations among the types and their appropriate features. In the implementa-
tion this is handled differently: We save references to a type’s immediate super types and its
appropriate features in the object itself. Thus, all the structure usually provided in a type hi-
erarchy is already contained in the instances of the class Type. Since more than one immediate
super type is generally allowed for any type t, we employ a Set<Type> to keep references to t’s
immediate super-types Ist(t). The function Appr is implemented as a Map<String, Type>.
Because Appr may be a partial function, it suffices to save only defined features in its domain,
i.e. every combination type, valueType ∈ T, feature ∈ F with Appr(type, feature) = valueType
results in the execution of istSet.put(feature, valueType) in the Type-object type.

What exactly does a TypeHierarchy-object do then? It still has a governing responsibility
over all types and features. In contrast to types, features are not implemented as a class of
their own. Rather they appear only in the form of Strings pointing to types or relations.
Each TypeHierarchy keeps the following data structures as attributes:

private Map<String, Type> typeMap;

private TreeSet<String> featureSet;

private Type topType;

Since it is one of our main components, the other components will communicate with the
type hierarchy rather than with any Type-objects. Obviously, models and formulas mention
types, but there only the types’ names appear as Strings rather than Types. Therefore, a
TypeHierarchy provides an interface with other components by virtue of methods such as
addType(String typeName), getType(String tyeName), addIst(String typeName, String

3.2. KRIPKE STRUCTURES: STATES, TUPLES AND RELATIONS 29

istName) and addFeature(String typeName, String featureName, String valueTypeName).
In order to quickly find the Type-object corresponding to each String typeName, a Map<String,
Type> is used by the aforementioned methods. Even though feature appropriateness is en-
coded into each Type, the TypeHierarchy maintains its own TreeSet<String> of feature
names. This will prove useful later on. A reference to the top type of the type hierarchy
is saved for the model checking procedure. When having created a type hierarchy from an
input, instead of demanding a certain type to be declared the top type (i.e. the hierarchy’s
root type) explicitely, it suffices to call the method updateTopType(). This will begin at an
arbitrary type in the hierarchy and recursively follow one arbitrary reference in the current
type’s set of immediate super types, until a type with no immediate super type is encountered.
This then must, by definition, be the top type.

3.2 Kripke Structures: States, Tuples and Relations

Polyadic Kripke structures M = 〈S, {Rf | f ∈ F}, V 〉 are implemented as instances of the
class KripkeStructure whose attributes are

private Map<Integer, State> stateMap;

private Map<String, Relation> relationMap;

private int stateCounter;

The first attribute corresponds to S, except that it assigns each state a number in order
to differenciate between states with the same type. The integer stateCounter is incre-
mented each time a newly added state saves it as one of its attributes, starting at 0. The
set {Rf | f ∈ F} becomes a Map<String, Relation>-object where each feature String f
is mapped to a Relation-object. As in the conventional definition of polyadic relations,
each Relation contains a set of Tuples, each of which in turn is an ordered list of an
arbitrary number (≥ 1) of States. Each state contains information about its number
and (the name of its) type, i.e. the type specified by the valuation V . Again, although
States, Tuples and Relations have their internal data structures, other main components
will only manipulate them by interfacing with the KripkeStructre-object through methods
such as addState(String initialTypeName), getState(int number), addTuple(String

relationName, Tuple tuple), addRelation(String relationName).

3.3 Formulas

Java’s object orientation will serve us well in the construction of formulas. We can implement
the tree structure of formulas easily by supplying a class for each connective. We can further
define the kind and amount of arguments for each connective according to the syntax of
formulas. All formula classes generalise to class Formula. The relevent class information on
atomic formulas t ∈ T and complex formulas is summarised in figure 3.2.

As mentioned in section 3.1 AtomicFormulas only mentions the name of their type, rather
than pointing to the actual Type. The Java type ArrayList<Formula> is an ordered and
possibly empty list of Formula-objects. For more information on IProgram see section 3.4.

30 CHAPTER 3. IMPLEMENTATION OF MAIN COMPONENTS

Formula Class Class Attributes

t AtomicFormula String typeName

¬φ NegationFormula Formula subFormula

(φ1 ∧ φ2) ConjunctionFormula Formula subFormula1, subFormula2

(φ1 ∨ φ2) DisjunctionFormula Formula subFormula1, subFormula2

(φ1 → φ2) ImplicationFormula Formula subFormula1, subFormula2

(φ1 ↔ φ2) BiimplicationFormula Formula subFormula1, subFormula2

〈α〉(φ1, ..., φn) DiamondFormula IProgram subProgram,

ArrayList<Formula> subFormulaList

[α](φ1, ..., φn) BoxFormula IProgram subProgram,

ArrayList<Formula> subFormulaList

> TopFormula

⊥ BottomFormula

Figure 3.2: Implementation of formulas

3.4 Programs

Similarly to formulas, programs are objects put together as a tree. This time the leaves
or atomic programs are features f ∈ F . The result of our implementation of all program
operators according to the syntax of programs is summarised in figure 3.3.

Noticeably, some of the prescribed attributes are of a Java type not listed in the column
of classes. These are Java interfaces rather than Java classes. This is indicated by their
prefix ‘I’. Java interfaces are employed for the implementation of programs to make multiple
inheritance possible, the most general being IProgram. In a simplified class diagramm, figure
3.4 displays all inheritances among interfaces (with prefix ‘I’) and classes (without prefix ‘I’)
associated with programs.

When a class inherits from a class, or when an interface inherits from an interface, the
declaration of that class or interface in the Java code is succeeded by extends, e.g. public

interface IAtomicUnionProgram extends IProgram. Whenever a class inherits from an
interface, implements is used instead. For our purposes there is no need to differentiate
between extends and implements, though. Only the possibility of multiple inheritance among
Java types is relevant here.

The need for this multiple inheritance originates from the different classifications of pro-
grams in the syntax for programs: αi, βi and γi from definition 4 may be called normal
programs, atomic union programs and atomic composition programs, respectively. The latter
two are restricted for reasons of model checking complexity. Nevertheless, we end up with
two different kinds of composition and union. To avoid having to implement them as separate
classes, multiple inheritance through Java interfaces is employed.

Now it becomes obvious why a UnionProgram takes two IProgram arguments while an
AtomicUnionProgram takes two IEmptyOrAtomicOrAtomicUnionProgram arguments. Analo-
gously, a CompositionProgram takes firstly an IProgram argument, but an AtomicCompositionProgram

must take an IEmptyOrAtomicOrAtomicCompositionProgram as its first argument. The
IterationProgram is also confined to arguments of Java interface IEmptyOrAtomicOrAtomicUnionProgram.

The advantage in this differenciation can be seen in the syntax of the 	 and app operators.

3.5. MODEL CHECKER 31

Operator Class Class Attributes

ε EmptyProgram

f AtomicProgram String featureName

(α1 ∩ α2) IntersectionProgram IProgram subProgram1, subProgram2

(α1 ∪ α2) UnionProgram IProgram subProgram1, subProgram2

(α1 ∪ α2) AtomicUnionProgram IEmptyOrAtomicOrAtomicUnionProgram

subProgram1, subProgram2

(α1;α2) CompositionProgram IProgram subProgram1,
AtomicProgram subProgram2

(α1;α2) AtomicCompositionProgram IEmptyOrAtomicOrAtomicCompositionProgram

subProgram1,
AtomicProgram subProgram2

α∗ IterationProgram IEmptyOrAtomicOrAtomicUnionProgram

subProgram

(α1 u α2) IntersectionInAPointProgram IProgram subProgram1, subProgram2

	(α1, α2, α3) ComplementProgram IEmptyOrAtomicOrAtomicCompositionProgram

subProgram1,
AtomicProgram subProgram2,
IProgram subProgram3

app(α1, α2, α3, α4) AppendProgram IEmptyOrAtomicOrAtomicCompositionProgram

subProgram1, subProgram2,
subProgram3, subProgram4

elem(α) ElemProgram IProgram subProgram

Figure 3.3: Implementation of programs

Wherever an argument must be an IEmptyOrAtomicOrAtomicCompositionProgram, it func-
tions as a path syntactically, and as a pointer to certain value tuples in the model semantically.
By forcing these compositions to be atomic, the resulting relations remain deterministic.

3.5 Model Checker

Finally, the main component, that brings all other main components together, is the model
checker. Even though model checking is a procedure, we treat it as a component, as it is

encapsulated in a Java class when implemented. Its purpose is to answer the questionM
?
� Φ

for some collection of models M and a theory Φ.
All involved components need to be handed over to the ModelChecker-object for checking.

For this purpose, they are compiled into a Project, i.e. an object with the following class
attributes.

private TypeHierarchy th;

private ArrayList<ModelGroup> modelGroupList;

private Theory theory;

TypeHierarchy has already been introduced. The other attributes are straightforward: A
ModelGroup is just a class containing an ArrayList<KripkeStructure> called modelList.

32 CHAPTER 3. IMPLEMENTATION OF MAIN COMPONENTS

Figure 3.4: Inheritance among program interfaces and classes

Several ModelGroups are then contained in an ArrayList<ModelGroup> in the project, for
organising a possibly vast amount of models.

From the given project the ModelChecker checks each combination of modelM = 〈S, {Rf | f ∈
F}V 〉 and formula φ. For this we employ an implementation of the algorithm in definition 9.
For this purpose our class ModelChecker supplies the data structures

private Map<IProgram, Relation> extendedRelationMap;

private Map<State, Set<Formula>> stateLabelMap;

Their usage is similar to that of KripkeStructure’s class attributes. All information from
M is contained in them, but in an extended form. Instead of mapping Strings to Relations,
we now use the actual IPrograms as map keys. This Map<IProgram, Relation> is named
extendedRelationMap because it will not only contain the relations Rf for all f ∈ F ,
but also all relations denoted by complex programs that appear in φ′. The Map<State,

Set<Formula>> is what records the state labels. Each state in M is mapped to a set of
Formulas, i.e. the set of labels.

With these data structures in place, we can now proceed with checking φ′ against M . The
following methods implement the mentioned formal algorithm.

• adoptRelationsFromModel(KripkeStructure model)

This method iterates through the model’s Map<String, Relation> relationMap, sav-
ing the same relations in the extendedeRelationMap, except that this time AtomicPrograms
that are based on the respective feature String are used as map keys.

• createAtomicLabels(TypeHierarchy th, KripkeStructure model)

Now each state collects labels in the form of atomic formulas. The two atomic labels
that every state s will maintain is > and V (s), i.e.

3.5. MODEL CHECKER 33

addLabelToState(currentState, new TopFormula()); and
addLabelToState(currentState, new AtomicFormula(

currentState.getInitialTypeName().toLowerCase())); are called. Beyond these,
s is labelled with all super-types of V (s). Each Type has a built-in recursive method
getAllSuperTypes() that returns a Set<Type>-object, i.e. the set of all super-types.
It performs a calculation that is analogous to that of Ist∗ in definition 3.

If the type V (s) is not in the project’s type hierarchy the latter labelling obviously is
skipped.

• normalizeFormula(Formula formula, KripkeStructure model)

For our labelling algorithm each formula φ must be in normal form φ′, i.e. it may only
be constructed from >, types t ∈ T,∧ and 〈α〉 where α ∈ Progs. Therefore, a normal-
isation method was implemented which works in the same way as the function N in
definition 5. Additionally, though, whenever this method encounters a DiamondFormula

or BoxFormula it extracts that formula’s subProgram and includes its denoted relation
in the extendedeRelationMap by calling
extendedRelationMap.put(subProgram, program.getSemantics(model)). If this pro-
gram should refer to any feature for which the model has defined no relation, the pro-
gram is included in the extendedeRelationMap anyway, but it is mapped to an empty
relation, i.e. ∅.

• createComplexLabels(Formula formula, KripkeStructure model)

Now that our formula is normalised to φ′ and all atomic labels are assigned, we can go
about evaluating φ′ in a bottom-up fashion. The workings of the createComplexLabels
method are described by the addComplexLabels procedure from defnition 9.

• isFormulaSatisfiedByModel(Formula formula, KripkeStructure model)

After having labelled every state with all sub-formulas of φ′ which it satisfies, the only
step remaining is performed by going through all states and seeing if they are labelled
with φ′ itself. If there is a state without this label, it will be pointed out by the method,
so that the user can be informed which state falsifies which formula. If no such state is
identified the formula is declared satisfied by the model.

34 CHAPTER 3. IMPLEMENTATION OF MAIN COMPONENTS

Chapter 4

Input and Output

This chapter is concerned with the implementation of several different interfaces with the
Model Checker program: (1) Importing models and type hierarchies from other programs,
(2) converting formula strings that were entered by hand to Java objects, and (3) converting
the main input components to XML files and back.

4.1 Input from LKB and TRALE

Importing input material is not an integral part of the program. But it gives the user a
chance to see models and type hierarchies produced by two other parsers instead of having
to create her own from scratch. These programs are LKB [Copestake, 2002] and TRALE
[Carpenter and Penn, 1999]. We tested them using “LKB for windows”1 and the TRALE
parser pre-installed on Stefan Müller’s bootable Linux CD called Grammix [Müller, 2007a].

The following gives a glimpse of our effort to parse files that contain type hierarchies
and feature structures to TypeHierarchy and KripkeStructure objects, respectively. The
principle remains the same in all four parsers: Recursively descending top-down LL parsing
without back-tracking. They are each adapted to the specific kind of structure at hand in an
ad hoc fashion.

4.1.1 LKB

Figure 4.1 shows an excerpt from a types.tdl file from the LKB grammar g8gap described
in Copestake [2002].

unary-rule := phrase &

[ORTH #orth,

SEM #cont,

ARGS < [ORTH #orth, SEM #cont] >].

Figure 4.1: An entry from an LKB grammar’s types.tdl

1Downloadble at http://wiki.delph-in.net/moin/LkbInstallation. The bootable Linux CD available
at http://depts.washington.edu/uwcl/twiki/bin/view.cgi/Main/KnoppixLKB is an alternative, but we did
not test this.

35

http://wiki.delph-in.net/moin/LkbInstallation
http://depts.washington.edu/uwcl/twiki/bin/view.cgi/Main/KnoppixLKB

36 CHAPTER 4. INPUT AND OUTPUT

An LKB grammar constitutes several files, but we will focus on this one, as it is useful
for creating a type hierarchy. This example encodes the definition of type unary-rule. In
types.tdl there is such an entry for each basic type. Left of “:=” the defined type is
mentioned. To the right of “:=” come several expressions, seperated by “&”, that define this
type explicitely and implicitely. The type phrase is an immediate super-type of unary-rule;
but what follows the “&” is an attribute-value matrix describing a property of all states with
the type unary-rule. Words starting with a “#” are variables for reentrancy. “<” and “>”
indicate lists. Upper-case words are features. Thus, this entry tells us that each state with
the type unary-rule must be such that its ORTH successor and its SEM successor have a
value which is respectively compatible with the ORTH and the SEM successor of the first
state in the list of its ARGS successor. In other terms, this rule may be expressed as the
feature structure description in figure 4.2.

unary-rule → phrase ∧

ORTH 1

SEM 2

ARGS 〈

[
ORTH 1

SEM 2

]
〉

Figure 4.2: LKB entry as feature structure description

Our LKB type hierarchy parser turns all data in a types.tdl file in to a TypeHierarchy in
three steps:

1. Tokenising
This makes use of regular expressions. After all Prolog comments, line breaks, etc. are
removed and the LKB entries are neatly separated, each entry’s tokens are split and
saved in an array of token strings. From here they are each converted to that token
object which corresponds with the string’s content.

2. Creating a Construct tree
The parser now linearly goes through this sequence of token objects and builds a tree
of Construct objects. Each represents a part of the input, e.g. CType, CAvm, CList,
CReference, etc. The leaves of this tree are all token objects such as TFeature, TType
and TReference.

3. Creating a type hierarchy from the Construct tree
This tree is the product of the actual recursive descent. Once it is established we traverse
it bottom-up in order to simultaneously build a TypeHierarchy with the same structure.
Types are instantiated and augmented with features via the content of the TType and
TFeature objects. Multiple inheritance is easily realised because in a hierarchy each
type’s name is unique.

Next, we take a look at “LKB for windows” to demonstrate how to come by model data.
That data text is then parsed into a KripkeStructure in much the same way as above.

The “LKB Top” window is shown in figure 4.3. From here a grammar is loaded by
selecting “Load→ Complete Grammar” from the menu, and then a file script from an LKB
grammar folder. This file internally loads all files involved in that folder’s grammar. If we
load the g8gap grammar we are presented with its type hierarchy in graph form (see figure

4.1. INPUT FROM LKB AND TRALE 37

Figure 4.3: The “LKB Top” window

4.4). Types whose names starts with “glbtype” are quasi-types inserted into the hierarchy in
order to satisfy the greatest lower bounds condition [Copestake, 2002].

If we now select “Parse → Parse input” from the menu, we are prompted to input an
expression which consists of the words provided by the grammar, in our case “the”, “this”,
“that”, “these”, “those”, “aardvark”, “dog”, “cat”, “bark”, “chase”, “to”, “near”, “give”. If
successful, the parse is shown in a new window containing at least one small parse tree. By
clicking on it and selecting “Show enlarged tree” a window with the same tree opens. This
parse tree is larger, though, and allows the user to inspect its individual nodes. The parse
tree only shows the syntactic backbone of the selected HPSG derivation. In order to see
all information involved in the derivation, a context menu appears when clicking on a node.
From this “Feature structure” may be selected. If that node is the root of the parse tree, the
user may view the feature structure of the entire derivation this way (e.g. “The dog barks”,
see figure 4.5).

The display of the feature structure is not quite in the conventional way, but looks quite
similar. There is, however, an option provided for exporting the given information to a TEX-
file (e.g. figure 4.6), thus rendering it to the well-known style of an AVM (figure 4.7). We are
interested in this option because it is a way of saving the derivation into a format that can
then be translated to a model in the form of a Kripke structure.

The text in figure 4.6 can now be parsed using the same kind of steps mentioned above.
Of course our LkbModelParser has its own token and construct objects for tokenising and
parsinig. This time step 3 creates a KripkeStructure object from the Construct tree. Inter-
estingly, there is no need for polyadic relations in the resulting KripkeStructure because LKB
represents lists in an implicite way in its AVMs. Figure 4.7’s ORTH sub-structure, for exam-
ple, represents the string “the dog barks”, which would explicitely be [ORTH 〈the, dog , barks〉].
The implicite way nests AVMs of some list type, dividing each sub-list into its head element
(FIRST) and tail list (REST).

4.1.2 TRALE

Figure 4.8 shows the beginning of the contents of a TRALE grammar’s signature file. It
contains all types and features for that grammar. bot is the top type. The tree structure
of the hierarchy is realised by indentation, i.e. in figure 4.8 bot is the immediate super-type

38 CHAPTER 4. INPUT AND OUTPUT

Figure 4.4: The LKB type hierarchy for the g8gap grammar [Copestake, 2002]

Figure 4.5: The beginning of an LKB feature structure for “The dog barks”

4.1. INPUT FROM LKB AND TRALE 39

$ \avmplus{\att{binary-head-second-passgap}\\

\attval{ORTH}{\avmplus{\att{*dlist*}\\

\attval{LIST}{\ind{0}} \avmplus{\att{*ne-list*}\\

\attvaltyp{FIRST}{the}\\

\attval{REST}{\ind{1}} \avmplus{\att{*ne-list*}\\

\attvaltyp{FIRST}{dog}\\

\attval{REST}{\ind{2}}

\avmplus{\att{*ne-list*}\\

\attvaltyp{FIRST}{BARKS}\\

\attval{REST}{\ind{3}}\ \ \myvaluebold{*LIST*}}}}\\

\attval{LAST}{\ind{3}}}}\\

...

Figure 4.6: An excerpt of LKB’s TEX output for the parse of “The dog barks”

...

ORTH

dlist

LIST 0

ne-list

FIRST the

REST 1

ne-list

FIRST dog

REST 2

ne-list

FIRST barks

REST 3 list

LAST 3

...

Figure 4.7: A part of an AVM produced by LKB, the rendering of figure 4.6’s TEX code.
Nested AVMs of type dlist or ne-list represent a list.

40 CHAPTER 4. INPUT AND OUTPUT

type_hierarchy

bot

nonloc rel:list slash:list

none_or_sign

sign phon:list loc:local nonloc:nonloc v2:bool trace:minus_or_extraction_or_vm lex:bool max_:bool

word

spr_saturated_word

glbtype14

complementizer_word

preposition_word

mod_preposition

noun_mod_preposition

location_noun_mod_prep

comp_preposition

verb_word

trans_verb

strict_trans_verb

ditrans_verb

subjlos_verb

intrans_verb

strict_intrans_verb

np_pp_verb

per

second_or_third

third

second

first_or_third

&third

first

...

Figure 4.8: An excerpt of a TRALE type hierarchy

of nonloc, none or sign and per, none or sign is the immediate super-type of sign, etc.
A type’s appropriate features are listed in the same line. Here nonloc has two appropriate,
REL and SLASH, which both expect a value of type list.

The parsing of such data is then straightforward. At every time our TRALE type hierarchy
parser saves the type name last seen for each indentation and declares it to be the immediate
super-type of all types found with one more indentation. We may also encounter the same
type more than once. Every non-initial occurence of a type is marked with a & indicates
that the same type has more than one immediate super-type. In figure 4.8, for example,
third and &third are parsed to the same Type, inheriting both from second or third and
first or third.

To come by model data from TRALE, we go through a similar process as in section 4.1.1.
We open the TRALE parser which loads a grammar. In our following example this is the
grammar that goes with chapter 10 of Müller [2007b]. Upon entering a well-formed sentence
into the prompt we get to see two windows: the chart parse (figure 4.9) and the resultung
AVM (figure 4.10).

The latter window allows us to save the resulting data to a file (see figure 4.11). This
now serves as the input for our TraleModelParser. It again tokenises the text into its own
token objects by virtue of regular expressions. Then a construct tree is created for every

4.1. INPUT FROM LKB AND TRALE 41

Figure 4.9: TRALE Chart Parse of “Der Mann gibt der Frau das Buch”

Figure 4.10: TRALE parse of “Der Mann gibt der Frau das Buch” with the root note expanded

42 CHAPTER 4. INPUT AND OUTPUT

!newdata "[der,mann,gibt,der,frau,das,buch]" (S0(1"head_filler_phrase")(V2"phon"(L3(#4 13)

(#6 14)(#8 69)(#10 45)(#12 46)(#14 30)(#16 31)))(V17"loc"(S18(19"local")(V20"cat"(S21

(22"cat")(V23"head"(#24 65))(V25"spr"(#26 66))(V27"subcat"(#28 67))))(V29"cont"(#30 68))))

(V+31"dtrs"(L32(#33 71)(#35 70)))(V+36"head_dtr"(#37 70))(V38"lex"(S39(40"minus")))

(V+41"max_"(S+42(+43"bool")))(V+44"non_head_dtrs"(L45(#46 71)))(V47"nonloc"(S48(49"nonloc")

(V+50"rel"(S+51(+52"list")))(V53"slash"(L54))))(V+55"trace"(S56 (57"minus")))(V58"v2"(S59

(60"plus"))))(R61 69(A62"gibt"))(R63 68(S64(65"cont")(V66"nucleus"(S67(68"assertion_or_imperative")

(V69"arg3"(#70 59))))(V71"qstore"(#72 60))))(R73 67(L74))(R75 66(L76))...

Figure 4.11: An excerpt of a text file containing the TRALE parse of “Der Mann gibt der
Frau das Buch”

entry in the file. Every entry represents an HPSG reference (tag) and its tree-formed sub-
structure of the entire AVM, down to all subsequent tags in that sub-structure. When creating
a KripkeStructure from these construct trees, all sub-structures are merged into a single
structure according to their references.

Since TRALE allows cycles in its models, the recursive descent into a model avoids getting
caught in loops by remembering which nodes have already been visited. When a loop is found
the edge responsible for closing the cycle gets saved in a global array for later and that path is
not pursued further. Afterwards those critical edges are then inserted into the grand structure.
This can appear inside a nominal phrase, for example, when a determiner contains a reference
to its noun and vice versa.

Even though the resulting KripkeStructure is a translation of TRALE’s output, it is not
necessarily a HPSG model in the strict sence. That is, there might be states containing types
which are not maximally specific, i.e. leaf types. This can happen because TRALE’s search
of a grammar-fulfilling construct only specifies types as far as is necessary.2

4.2 Formula Parser

PPDL2 formulas are entered by hand in a textfield provided by the GUI (see figure 6.1). It
allows UNI-code characters, but as it would be inconvenient for the user to enter UNI-code
characters such as ε,∩ etc., buttons are provided for this purpose. In fact, all characters (and
strings) constituting operators and junctors are covered by these buttons. A CaretListener

keeps track of the cursor’s position in the formula textfield so that the symbol associated with
the clicked button is inserted there.

In addition to these expressions, the user may include commentaries in the formula
textfield. Whenever ‘//’ appears in the text, the rest of that line is considered a commentary
by the formula parser. Any tab-space, normal space or line break is also ignored by the
formula parser. Nevertheless the raw text, i.e. as it was entered, is saved separately in the
formula object. This is for reasons of convenience. A user entering a fairly complex formla
will appreciate the possibility to divide it into ‘blocks’ so as to visually stay in control (e.g.
our presentation of formulas in chapter 1). Once the formula is parsed and again rendered
to a linear and compressed string (no spaces or line breaks), it can be very hard to read
and make sence of. Thus, each formula has an attribute humanText for saving the originally
entered text, which is again shown in the formula textfield whenever this formula is selected
in the GUI.

2Frank Richter made us aware of this point.

4.2. FORMULA PARSER 43

When the user finishes entering a formula, she hands it over to the parser, i.e. a FormulaParser-
object receives the entered String and does the usual three steps: tokenise, create a Construct
tree, create a Formula from the Construct tree.

This parser also only needs a linear sweep of the token sequence because it is predictive
and in a sence. The operators that appear in formulas come in three different categories:
prefix (e.g. app, elem,), infix (e.g. ∧,∩,u), and postfix (e.g. ∗). Each creates a new
construct in the tree being built. Each construct saves a pointer to its parent construct and
retains a list of children contructs. The “character” of a construct is fixed by internally saving
the determining token as characteristicToken. With infix and postfix operators at least
one child argument will be encountered before the characteristic operator token comes. The
parser does not mind this. It just takes the children and the operator as they come.

The reader will have noticed that the syntax of formulas and programs is strict as per-
taining to round brackets. It demands them, even where they are normally omitted because
there is no human fear of ambiguity (e.g. elem((F1 ∩ F2)) must have both pairs of round
brackets, the inner one for the intersection and the outer one for the elem program). In the
present program this convenience is sacrificed for determinism in parsing. Thus, it suffices to
linearly go through the sequence of tokens once. The ∗ operator, since it is a postfix operator,
needs special treatment. When a construct receives such a token, it removes its last child
from the children list, attaches a new child construct in its place with the star token as its
characteristicToken, and reattaches the remooved child to the new construct’s children
list.

Diamond and box formulas are another interesting case. Since they can have an ar-
bitrary amount of sub-formulas, a problem arises when a modality construct has 0 chil-
dren. Take 〈α〉(), for example. After the program α has been fully received and added to
the pertinent child list, a closed angled bracket comes next and becomes this construct’s
characteristicToken. After this an open round bracket is received. Since a child is ex-
pected to come after the open round bracket, an unspecified construct is created, as usual,
and appended to the children list. Next, the tokens constituting that child should come, but
instead a closed round bracket is encountered. So, for this special occasion, an if-clause takes
care of the ‘wrong expectation’. The modality construct is relieved of its last child and gets
closed.

Formulas such as (a → b ↔ c) are ambiguous and should either be ((a → b) ↔ c) or
(a→ (b↔ c)). This ambiguity is caught by the parser when it attempts to save the received
token as the current construct’s characteristicToken. It first checks if this construct already
has a characteristic token. This case is only allowed if both tokens come from the same
operator and if that operator is associative. That is, formulas like (a ∩ b ∩ c), (a ∨ b ∨ c),
(a; b; c) etc. are allowed. In any other case, e.g. (a ∧ b ∨ c) or (a→ b→ c), an Exception is
thrown that explains which construct contains which operator ambiguity.

After all information has been stored up in a tree of Construct objects that tree is
transformed into a Formula bottom-up. Tokens that constitute strings which are not operators
must either be types or features. Which is which is infered from context. This context depends
upon each construct’s character and is respectively provided in a list of information about
the kind of expected children. If a construct’s children are of the wrong type or amount an
Exception informs the used about this.

Another thing that needs to be inferred is whether a composition is atomic or not (i.e.
(γ; f) or (α; f) from definition 4). The same goes for union programs: Are they atomic or
not (i.e. (β1 ∪ β2) or (α1 ∪ α2) from definition 4)? Since we are building these programs and

44 CHAPTER 4. INPUT AND OUTPUT

public void write(Object o, String filename) throws Exception{

if(!filename.endsWith(".xml")){

filename += ".xml";

}

XMLEncoder encoder =

new XMLEncoder(

new BufferedOutputStream(

new FileOutputStream(filename)));

encoder.writeObject(o);

encoder.close();

}

Figure 4.12: Writing a Java object o to an XML file fileName

public Object read(String filename) throws Exception {

XMLDecoder decoder =

new XMLDecoder(new BufferedInputStream(

new FileInputStream(filename)));

Object o = decoder.readObject();

decoder.close();

return o;

}

Figure 4.13: Creating an object o from an XML file fileName

formulas bottom-up we determine what arguments are contained in compsition and union
programs before this question of atomicity is addressed. Once the children are known, the
parser choses the non-atomic versions if it must, and it choses the atomic versions in any
other case.

When constructs which are made from an associative operator are transformed into their
respective programs and formulas the amount of children they collected is important. If they
have two children their transformation is straightforward. If, however, they have more than
two children their list of children is recursively “left-folded”, i.e. the first two children are
transformed to a program or formula, which is then merged with the next child and so forth.

4.3 XML Serialisation of Java objects

Our standard file format for saving all main components is XML. This is very convenient
because Java has a native serialiser for writing objects to XML and reading them again. The
only code necessary for writing (or xml-encoding) is found in figure 4.12.

Any Java object o can be handed to this write-method, along with the path fileName

of the XML file that it is to be written to. In order to reinstate the XML data from a file to
a Java object, we use the read-method found in figure 4.13.

Here the path of the XML file to be read is handed to the method. It xml-decodes the
data therein and creates the object o from it. Event hough the type of the originally written
object may be more specific than Object, the XMLDecoder only creates an object of type
Object. Whatever method called the read-method can then cast the returned object to

4.3. XML SERIALISATION OF JAVA OBJECTS 45

private Map<String, Type> typeMap;

private TreeSet<String> featureSet;

private Type topType;

public TypeHierarchy(){

}

public Map<String, Type> getTypeMap() {

return typeMap;

}

public void setTypeMap(Map<String, Type> typeMap) {

this.typeMap = typeMap;

}

public TreeSet<String> getFeatureSet() {

return featureSet;

}

public void setFeatureSet(TreeSet<String> featureSet) {

this.featureSet = featureSet;

}

public Type getTopType() {

return topType;

}

public void setTopType(Type topType) {

this.topType = topType;

}

...

Figure 4.14: An excerpt from the code in class TypeHierarchy demonstrating the Java con-
vention for getters and setters

whatever type it needs. Thus, if the file of a serialised object of an unexpected type is read,
a ClassCastException will occur.

An essential prerequisite for Java’s XML serialiser is adherence to the Java convention
of providing every involved class with getters and setters. For us, the involved classes are
KripkeStructure, TypeHierarchy and Theory, but by extension all objects that they hold
internally must also keep to the convention, i.e. the classes Relation, Type, Formula, etc.
Getters and setters are methods with a prescribed format. Figure 4.14 shows an excerpt of
the code in class TypeHierarchy.

All class attributes must be declared private. For each attribute T x there must be a
getter method getX returning x, and a setter method setX taking an object of type T with
a void return. Another requirement for Java’s XML serialiser is that there be an empty
constructor, as seen here. Another constructor not shown here is one that we use when
instantiating a TypeHierarchy-object by virtue of a parser, for example. It is responsible for
initialising all class attributes. The XMLDecoder, on the other hand, takes care of initialising
all class attributes, and therefore is content with an empty constructor.

Figure 4.15 shows an excerpt from an XML file created by an XMLDecoder by serialising a
TypeHierarchy-object. Refer to section 3.1 for a reminder of the class attributes of Type and
TypeHierarchy. The XMLDecoder then learns from the row <void property="topType">

46 CHAPTER 4. INPUT AND OUTPUT

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.6.0_24" class="java.beans.XMLDecoder">

<object class="hpsg.TypeHierarchy">

...

<void property="featureSet">

...

</void>

<void property="topType">

<object id="Type0" class="hpsg.Type">

<void property="featureMap">

<object class="java.util.HashMap"/>

</void>

<void property="istSet">

<object class="java.util.HashSet"/>

</void>

<void property="typeName">

<string>top</string>

</void>

</object>

</void>

<void property="typeMap">

...

<void method="put">

<string>top</string>

<object idref="Type0"/>

</void>

</void>

</object>

</java>

Figure 4.15: An excerpt of an XML file containing a serialised TypeHierarchy-object

4.3. XML SERIALISATION OF JAVA OBJECTS 47

that the TypeHierarchy-object has a property topType and instantiates a new Type for this
via the data in the subsequent 11 rows: The topType gets an empty HashMap as featureMap,
an empty HashSet as istSet, and the String “top” as typeName.

An important feature of xml-decoding can be seen in this example. When, in a lower
row, the top type is put into the type hierarchy’s typeMap, the String “top” is used as its
key. The object that this key points to should of course be the Type instantiated earlier. In
order not to create another object with the same attributes at this point, the value object
to be put into the typeMap is found by reference. That is, when the top type occurs for the
first time in <object id="Type0" class="hpsg.Type"> it receives an id made from its Java
type and a counter number. When this object appears again, the XMLDecoder makes sure
that it uses the already instantiated object by looking it up with the same id in row <object

idref="Type0"/>.

48 CHAPTER 4. INPUT AND OUTPUT

Chapter 5

Graph Visualisation

This chapter concerns the considerations that led to our choice and implementation of graph
visualisation. Our goal was to show all aspects of a model’s structure in the form of a network.
These include

• states indicating their types

• directed edges indicating their feature

• ordered lists of states, including empty lists

When, for example, the sentence “Tim snores” and a few rudimentary features thereof
are considered, we obtain an AVM such as that in the left half of figure 1.5. Visualising such
a feature structure as a network led to the right half of the same figure.

5.1 Prefuse Graph Visualisation

After searching through the vast options for graph visualisation, we found prefuse, an INFOR-

MATION VISUALIZATION TOOLKIT1, to be a viable option. It comes with many compre-
hensive features. Among many others, customly labelling and coloring nodes is very useful.
Directed edges with arrow heads are also possible. While that release did not allow the
same so-called decoration of edges as it did with nodes, the code for such an extension was
attainable from a forum entry2.

Prefuse graphs represent Kripke structures. Each blue node contains a label made up of
the unique number and type of the represented state. For every binary tuple in the visualised
Kripke structure the visualisation draws a directed edge from its first to its second state. The
green nodes visualise lists. In figure 1.5 the PHON feature of state 0 has a list value containing
states 4 and 5, in that order. Instead of somehow forcing these nodes to be positioned close to
each other, for each list we add a further node which points to its members. That node’s label
is <x>, where x is the length of the represented list. In order to identify the order of the list
members, the outgoing list edges are numbered starting with 1. Empty lists are represented
by nodes marked <0> which point to no other node.

The type of graph we use to visualise Kripke structures employs a force-based algorithm
to determine the position of its nodes. Loosely, this can be thought of as an algorithm that

1We imported the prefuse-beta-20071021 package, which can be found at http://prefuse.org/download/
2http://goosebumps4all.net/34all/bb/showthread.php?tid=19 retrieved on January 31, 2011

49

http://prefuse.org/download/
http://goosebumps4all.net/34all/bb/showthread.php?tid=19

50 CHAPTER 5. GRAPH VISUALISATION

Figure 5.1: Information visualisation reference model

lets each node repell all other nodes, but at the same time being bound to nodes with a shared
edge. The result is a decently viewable distribution of all nodes. This panel is provided by
prefuse’s libraries and will be a part of the Modelchecker’s GUI.

5.2 Visualising Kripke Structures

In the prefuse documentation3 we find a diagram that summarises the fundamental steps of
information visualisation (see figure 5.1). This diagram depicts the information visualisation
reference model, as defined in Card et al. [1999]. We will now take a look at how the steps in
the visualisation pipeline are implemented in the context of our program.

5.2.1 Data Transformations

The data in its intial form is, of course, all the data contained in a Kripke structure 〈S, {Rf | f ∈
F, V 〉. This data gets transformed into prefuse tables. These tables are similar to relational
data base tables and prefuse has its own query language to operate on them. Java class
KripkeStructure is equipped with a method toPrefuseGraph() for creating a Graph-object
from it. The following Java code shows how in a Graph each table’s name and its elements’
data types are defined.

Graph g = new Graph(true); //true -> directed graph

g.addColumn("state", State.class);

g.addColumn("edgeLabel", String.class);

g.addColumn("nodeLabel", String.class);

g.addColumn("isListNodeOrEdge", Boolean.class);

g.addColumn("isVisible", Boolean.class);

Obviously this table contains complementary columns, e.g. nodes have no use of the
attribute edgeLabel, but there is no conflict in this, and all elements to be visualised can be
filled into the same table. The second argument of the addColumn-method indicates the data
type of the data in this column. Even though the labels of states are already covered in the
nodeLabel-column, it is practical to save the actual State-object in the table for later use.
The usefulness of the isVisible-attribute will become apparent in section 6.5.

3http://prefuse.org/doc/

http://prefuse.org/doc/

5.2. VISUALISING KRIPKE STRUCTURES 51

List nodes make no use of this column. They and their outgoing edges have the isListNodeOrEdge-
attribute set to true which marks them for their coloring. Note that nowhere in the KripkeStructure
or its TextHierarchy is there a saved value indicating wether a feature points to a single state
or a list of states. Therefore no difference is made between a value being a state or a singleton
list. We see this in figure 1.5, where the SUBCAT edges starting in state 2 and state 14 each
point to a list node, but the one starting in state 10 points directly to state 13, rather than
to a list node that in turn points to that state.

5.2.2 Visual Mappings

A Visualization-object is responsible for governing all graphical data structures. In our
setting it saves the Graph that was just outlined. It also saves a RendererFactory which
is in charge of creating a VisualItem for each graph element. We attach the following two
LabelRenderers for labelling nodes and edges, respectively.

LabelRenderer nodeRenderer = new LabelRenderer("nodeLabel");

nodeRenderer.setRoundedCorner(8, 8);

LabelRenderer edgeRenderer = new LabelRenderer("edgeLabel");

edgeRenderer.setRoundedCorner(8, 8);

These two groups of elements are brought in connection with ColorActions. They are ob-
jects that specify various graphical options such as the color, thickness, shape, visibility and
transparency of edges, edge label text, edge label background, arrows, nodes, node label text,
node label background and potentially many more graphic items.

Instead of just specifying which group of VisualItems has which properties, the applica-
bility of ColorActions can also be dependent of the elements’ values. Here prefuse’s query
language comes into play. An example of this is the one node that is considered focused.
Its internal highlight-option is active, and its background is rendered red, due to (the last
add-call of) the following ColorAction.

ColorAction nodeFill = new ColorAction(modelNodes,

VisualItem.FILLCOLOR, ColorLib.rgb(200,200,255));

nodeFill.add("isListNodeOrEdge=true", ColorLib.rgb(150, 255, 150));

nodeFill.add("isVisible=FALSE", ColorLib.alpha(0));

nodeFill.add("_highlight AND isVisible=TRUE", ColorLib.rgb(255,200,125));

5.2.3 View Transformations

Once the graphic items are displayed they are by no means static. Many kinds of interaction
are possible through mouse and keyboard input. They enable the user to drag the entire
graph or single nodes (left mouse button: drag), to zoom (right mouse button: click or drag;
mousewheel), focus on a node (left mouse button: click) and highlight a node and all adjacent
nodes by color (mouse over).

Further interactions are provided by the other panels of the GUI (see section 6.4). That
is, the Visualization-object can still be edited after it has been rendered. Its components
have Java listeners attached to them. This is very useful, since we desire a way to change the
underlying Kripke structure by interacting with its visualisation.

52 CHAPTER 5. GRAPH VISUALISATION

5.3 Visualising the Type Hierarchy

Not to forget, a project’s type hierarchy is also a graph that ought to be visualised. Figure
1.6 shows the prefuse visualisation of a type hierarchy that comes with the models in section
1.2. Each type is represented by a node labelled with that type’s name and all its features
and all their value types. Instead of showing the hierarchy with its top type at the top it has
a radial shape here. This is merely the result of the force-based positioning of nodes and has
no further meaning.

Chapter 6

GUI

All of the functionality described in previous chapters is made applicable in our Java program
using a graphical user interface (GUI).1 We will now take a look at the panels and menu points
involved.

6.1 Project Tree

The project tree is to help the user navigate through all input material, i.e. all formulas, the
type hierarchy, and all models (see figure 6.1. The root node “Project” and its immediate
children are always present. They are initially empty, that is, there are no formulas under
“Theory”, the type hierarchy has no types or features, and no model groups or models are
found under the node entitled “Models”. Any material that is then imported or created by
hand is to be found under one of these three top-level nodes. Almost all nodes may carry
titles. These are often entered upon creation of the object contained thereby. They may also
be edited at a later time via “Project → Rename Selected Item”. When a formula, model or
model group is no longer needed, it may be deleted from the project and removed from the
project tree via “Project → Delete Selected Item”.

The project tree makes use of the Checkboxtree package for Java2 Bigagli and Boldrini
[2007]. In addition to a title, every node in the tree has a checkbox next to it. A checked node
is considered active in our program. When checking formulas against models, only active
ones are considered. When displaying a model’s graph the user has the option of hiding
certain states and edges. This is done by unchecking, i.e. deactivating, types and features
which those states and edges are respectively labelled with.

The menu is sensitive to what kind of node is selected in the project tree. For example, a
model group must be selected in order for the menupoint “Model → Add new Model” to be
clickable. A new model will thus be added to that model group. Similarly, when a model is
to be moved it must first be selected before “Model → Move Model” is clickable. Similarly,
the menupoints “Model → Save Snapshot” and “Type Hierarchy → Save Snapshot” are only
clickable whenever the intended object is selected in the project tree.

1The program is compiled to a jar file and should be able to run platform-independently. We only tested it
under Microsoft Windows 7, though. Potentially other platforms may not agree with some UNI-code characters
or the “Ctrl + left mouse button” combination mentioned in section 6.4.

2We used version 3.11 which can be downloaded at http://ulisse.pin.unifi.it:8081/nexus/index.

html#nexus-search;classname~checkboxtree

53

http://ulisse.pin.unifi.it:8081/nexus/index.html#nexus-search;classname~checkboxtree
http://ulisse.pin.unifi.it:8081/nexus/index.html#nexus-search;classname~checkboxtree

54 CHAPTER 6. GUI

Figure 6.1: The project tree (left) and the theory panel (right)

6.2 Import and Export

The user may import models (several at one time) and a type hierarchy from LKB or TRALE
via the respective menu points under “Model” and “Type Hierarchy”. If she has finished
viewing or editing them, she may export created or imported objects to an XML file in like
manner. Instead of doing this for every object in the open project, the user may instead chose
to save all of them as one project XML file via “Project → Save to XML”. Any XML file
created in this way may at a later time be loaded via “Project → Load from XML”. Caution
is advised whenever a project or type hierarchy is loaded, because they will take the place of
the former ones.

6.3 Theory

The theory panel (see figure 6.1) is shown whenever the “Theory” node or any formula is
selected. In the middle the user may enter a formula or edit a selected one. This textfield
displays unicode characters, as several of the operators are. To make it easier to enter these
operators, buttons are provided above. Each will insert into the textfield at the cursor’s
position the text which it bears as caption. Event hough some of these symbols might be
found on the user’s keyboard, they are included as a reminder and for completeness. To
write a diamond formula’s brackets either the buttons may be used or the symbols for “less
than” and “greater than” may be typed. One can include comments anywhere in the formula
textfield by typing “//”. All symbols in the same row to the right of “//” will thus be
ignored by the formula parser. Also, line breaks, tab spaces and normal spaces are allowed
everywhere.

6.4. MODELS 55

The lower textfield is read-only and is used as output for the model checker’s checking
and analysing process. Every such evoked process starts with a line of stars, so that they
may be distinguished more easily. Instead of having to scroll through the myriad of output
text, the user might prefer to have the output textfield cleared before every check or analysis.
This is ensured by checking the menupoint checkbox “Model Checker→ Always clear Output
Textfield before Checking”. Alternatively, the output textfield can be cleared anytime by
chosing “Model Checker → Clear Output Textfield” from the menu.

Having written a formula, the user must parse and save it before that information is lost
due to selecting some other formula from the project tree. If a formula is currently selected
and “Theory → Parse Formula and Save” is clicked, that formula will be overwritten by the
parsed formula. By clicking “Theory → Parse Formula and Save As...” the newly parsed
formula is instead appended to the theory with a new name that is entered via a message
box. In any case, the text in the textfield must first be successfully parsed. If this is not
the case, the parser attempts to help the user via a message box containing a rudimentary
feedback on the first error found in the parse process.

6.4 Models

All models are organised into model groups using the first three menupoints under “Model”.
When a model is selected in the project tree its graph representation is shown in the main
panel to the right. This display is newly generated for every newly selected model, that is
all states originate in the panels’s upper left corner and jiggle around until the force-driven
algorithm has found a somewhat decent position for all states. The prefuse package provides a
panel for manipulating several properties involved in this algorithm. The value sliders linked
to those properties both for the currently selected model and for the type hierarchy are found
under the tab “Forces”. The most useful property is probably DefaultSpringLength, i.e. the
length of all existing edges. Other viewing properties may be changed applying the mouse
buttons and the mouse wheel to the graph panel.

An important interaction with the graph is focusing a state (thus marking it red). This is
done by clicking on it with the left mouse button or by navigating to it using the panel under
the tab “Edit Model” (see figure 6.2). Besides navigation, this panel also provides ways to
edit all parts of the current model. The focused state may be removed, thus also removing
all incident edges. Its containing type may be changed in the top textfield, subsequently
clicking “save changes”. Underneath there are two tables listing all incoming and outgoing
edges, respectively. They contain all information about the focused state’s incident edges:
the feature of each edge and the type and number of the state on the other end of it. The
former two may be edited directly in the table by selecting the prudent cell and changing its
content. Clicking on “->” will focus the state adjacent via that row’s edge. When “[x]” is
clicked, that row’s edge is removed from the graph. A new incoming or outgoing state or list
node may be added to the focused node using the respective button. For linking two existing
nodes in the graph, another methos is employed: the source node must be focused, and the
target node must be clicked with the left mouse button while holding the Ctrl-button. This
works for any pair of existing nodes, i.e. state nodes and list nodes.

After finishing any manipulation of the current model graph, it may be saved by clicking
the menupoint “Model → Check Model and Save (As...)” (same behaviour as with “Theory
→ Parse Formula and Save (As...)”). The program then checks whether the model is well-

56 CHAPTER 6. GUI

Figure 6.2: The panel for editing models (left) and the currently visualised model being edited
(right). Green nodes are list nodes captioned with length of the represented list, all other
nodes are states. The red node is currently focused. All neighbouring states are highlighted
orange for convenience.

6.5. TYPE HIERARCHY 57

Figure 6.3: The panel for editing the type hierarchy (left) and the visualised type hierarchy
(right). The red type is the focused type.

formed. That is, no two list nodes may be adjacent, all n list edges coming from the same
list node must be numbered from 1 to n without duplication or gaps. If so, it is saved in its
internal format.

6.5 Type Hierarchy

When the “Type Hierarchy” node is selected from the project tree, the graph representing
the project’s type hierarchy is shown in the main panel to the right (see figure 6.3). Each
node contains a type (lower case), and underneath a list of all features (upper case) declared
to be appropriate for that type. Each feature’s value type is to the right of the feature. If the
user wishes, shes may hide all information about features by unchecking the menupoint check-
box “Type Hierarchy → Feature Visibility”. The edges represent inheritance relationships,
pointing from the more general to the more specific type.

Editing the type hierarchy happens in a very similar fashion as wth models. On the
panel under the tab “Edit TH” the focused type can be removed or edited. Its features are
listed in a table where they, too, can be removed or edited. A new feature is added to a
type via the button “+ feature”. The user must then select an already existing type from
the ensuing message box as its value type. All features must be distinct. In two further
tables the focused type’s immediate super-types and sub-types are listed. Each row mentions
an incoming or outgoing edge, respectively. Selecting the cell containing the adjacent type
navigates to that type. Clicking “[x]” in the second column deletes the intended edge. New
edges may be added using the buttons “+ super-type” and “+ sub-type” respectively. They
each introduce a new type node to the graph. If instead two existing type nodes are to be

58 CHAPTER 6. GUI

linked by a new edge, the source node must be focused and the target must be clicked with
the left mouse button while holding the Ctrl-button.

Here, too, the type hierarchy must be saved so as to internalise any changes and let them
participate in the model checking process. This is achieved by selecting “Type Hierarchy →
Check Type Hierarchy and Save” from the menu, if the graph obeys the following restrictions:
There are no cycles, the graph has exactly one component (i.e. it is not empty and all nodes
are connected), and there is exactly one type with no immediate super-type.

6.6 Model Checker

After all input materials have been prepared the user checks all formulas and models that
are to be checked. She then selects “Model Checker → Check” from the menu. The checking
algorithm’s results are summarised in the output textfield (see figure []). All checked models
are listed according to their model groups. For each there is one line per active formula φ
indicating whether this model satisfies φ (output: “� φ”) or not. In the latter case, the first
state that does not fulfill φ is identified (e.g. output: “state 0:phrase 2 φ”). In figure 6.1 we
see that the models for “tim snores” and “emma gives hector milk” (see section 1.1) satisfy
all formulas mentioned in chapter 1, except in the case of “emma gives hector milk” and
the head-feature principle. This is because we did not include more syntactic information
(like its HEAD values) than was necessary in section 1.2 to demonstrate the phonology and
subcategorisation principle.

If the user wishes to obtain more detailed information about the interaction of models and
formulas, she may instead invoke the analysing process under “Model Checker → Analyse”.
Here, the same textfield is used and all combinations of active models and formulas are
checked. But this time, we get to see the step-by-step evaluation of each single check. Figure
6.4 shows a small example: the formula (sign → 〈elem(PHON)〉(>)) describing each sign in
the model to have a non-empty list of PHON values.

After the formula is normalised to ¬(sign ∧ ¬〈elem(PHON)〉(>)) it is analysed as a tree
bottom-up. That is, when we read the evaluation from bottom to top, we start with the atomic
programs and formulas which are indented the most, and successively rise all the way to the
root, i.e. the entire formula, seeing more and more complexity and less and less indentation.
Each sub-program or sub-formula is displayed with its semantics right underneath, indicated
by “>>”. Sub-formulas come with a relation (enclosed in curly brackets), i.e. a list of tuples
(enclosed in round brackets). The semantics of sub-formulas is given by a list of all states
which fulfill it (enclosed in square brackets).

Before the analysis, all states in the model are listed. If the formula should not be satisfied,
all non-fulfilling states will be listed afterwards, so that the user can decide for herself where
and how far this formula is off from being satisfied. Since a lot of text is usually created in
this process, the user is advised to activate only one model and one formula for the detailed
analysis.

6.6. MODEL CHECKER 59

Figure 6.4: The output of analysing the formula (sign → 〈elem(PHON)〉(>)) against our
model for “tim snores” from section 1.5

60 CHAPTER 6. GUI

Chapter 7

Conclusions

The work presented here is not the first implementation of an HPSG model checker. Richter
et al. [2002] have already presented a graphical tool, called Morph Moulder (MoMo), which is
used in conjunction with TRALE for inputting TRALE’s equivalents of models, type hierar-
chies and formulas that are then checked for satisfaction. The main difference is the employed
logic: Relational speciate re-entrant logic (RSRL, Richter [2004]). RSRL is a very powerful
but costly1 logic, assumed to subsume PPDL2 in expressivity.

Søgaard and Lange [2009] explain that PPDL2 is not expressive enough to cover all gram-
mar principles of the fragment of the English language found in Pollard and Sag [1994]. They
also provide proofs for its main attractive feature, its effiency: Model checking is in P; to be
more precise, it has an upper bound of O(|φ2| × |S|4), where φ is a PPDL2 formula and S is
the set of states in the model being checked. This makes the checking of derivation structures
(from various sources) a tractable postprocessing step. Our Java implementation mirrors the
algorithm described in Søgaard and Lange [2009] in principle, modulo some programming
adaptions that is.

When testing the correctness of an HPSG parser, one may find a model checker useful to
uncover errors in the parsing process. If, for example, one of the parser’s principles causes a
contradiction and ought to make any derivation impossible (perhaps unknown to the devel-
oper), but the parser nonetheless outputs supposedly fulfilling derivation structures, checking
those structures against a theory that includes this principle will identify the parser to be
faulty. Being able to see which formula is unsatisfied in which states helps the developer to
focus in on the problem.2

Interaction with our model checker is made highly transparent due to visualisation of the
material and a detailed step-by-step analysis of the model-theoretic evaluation of formulas.
Being able to navigate large and complex models close up gives the user a good insight and
understanding of the material’s (local) structure. Visualising arbitrary lists is always difficult,
but we hope that we found a reasonable solution to this problem.

We deliberately put very few restrictions on forming type hierarchies and Kripke struc-
tures. If the user wishes to enforce various appropriateness constraints on the models, she is
free to do so via PPDL2 formulas. Examples for this can also be found in Søgaard and Lange
[2009]. A high level of compatibility was in our interest. This interest was also followed when
we implemented an interface with LKB and TRALE. Even though our tool lets you visualise

1Kepser et al. [2001] show the general model checking problem to be undecidable for RSRL.
2We thank Frank Richter for pointing out this idea.

61

62 CHAPTER 7. CONCLUSIONS

their outputs, the interpretation thereof is always up to its creator. Dependency grammar
is another area that can be explored using our model checker. Providing interfaces with
dependency treebanks and HPSG treebanks could be part of a viable future development.3

Acknowledgements
I would like to thank Manfred Schmidt-Schauß, Gert Webelhuth, Anders Søgaard and Frank
Richter for their helpful input and discussions.

Declaration of Authorship
I hereby declare that the work presented in this thesis is my own. Where I have consulted
the work of others, this is always clearly indicated.

3Anders Soegaard is to be thanked for stressing this connection.

Bibliography

L. Bigagli and E. Boldrini. Swing-based tree layouts with checkboxtree, 2007. URL http:

//www.javaworld.com/javaworld/jw-09-2007/jw-09-checkboxtree.html.

P. Blackburn and J. van Benthem. Modal Logic: A Semantic Perspective. ETHICS, 98:
501–517, 1988.

S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in information visualiza-
tion: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1999. ISBN 1-55860-533-9.

B. Carpenter and G. Penn. ALE 3.2 User’s Guide. Technical Memo CMU-LTI-99-MEMO,
Carnegie Mellon Language Technologies Institute, 1999.

A. Copestake. Implementing Typed Feature Structure Grammars. CSLI Publications, Stan-
ford, CA, 2002.

S. Kepser, M. Sailer, and G. Penn. On the Complexity of RSRL. In Proceedings FG-MOL
2001, volume 53 of ENTCS. Kluwer, 2001.

S. Müller. The Grammix CD Rom. A Software Collection for Developing Typed Feature Struc-
ture Grammars. In T. H. King and E. M. Bender, editors, Grammar Engineering across
Frameworks 2007, Studies in Computational Linguistics ONLINE, pages 259–266. CSLI
Publications, Stanford, 2007a. URL http://hpsg.fu-berlin.de/~stefan/Pub/grammix.

html.

S. Müller. Head-Driven Phrase Structure Grammar: Eine Einführung. Number 17 in Stauf-
fenburg Einführungen. Stauffenburg Verlag, Tübingen, 1 edition, 2007b. URL http:

//hpsg.fu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html.

C. Pollard and I. A. Sag. Head-Driven Phrase Structure Grammar. The University of Chicago
Press, Chicago, 1994.

F. Richter. A Mathematical Formalism for Linguistic Theories with an Application in Head-
Driven Phrase Structure Grammar. Phil. dissertation (2000), Eberhard-Karls-Universität
Tübingen, 2004.

F. Richter, E. Ovchinnikova, B. Trawiński, and W. D. Meurers. Interactive Graphical Soft-
ware for Teaching the Formal Foundations of Head-Driven Phrase Structure Grammar. In
G. Jäger, P. Monachesi, G. Penn, and S. Wintner, editors, Proceedings of Formal Grammar
2002, pages 137–148, 2002.

63

http://www.javaworld.com/javaworld/jw-09-2007/jw-09-checkboxtree.html
http://www.javaworld.com/javaworld/jw-09-2007/jw-09-checkboxtree.html
http://hpsg.fu-berlin.de/~stefan/Pub/grammix.html
http://hpsg.fu-berlin.de/~stefan/Pub/grammix.html
http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html
http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html

64 BIBLIOGRAPHY

A. Søgaard and M. Lange. Polyadic Dynamic Logics for HPSG Parsing. Journal of Logic,
Language and Information, 18(2):159–198, 2009.

	Introduction
	HPSG
	Polyadic Propositional Dynamic Logic
	Complex examples
	Non-empty Phonology
	Subcategorisation Principle
	Phonology Principle
	Acyclicity

	Overview of Chapters

	Formal Definitions
	HPSG Components
	Formulas and Programs
	Model Checking Algorithm

	Implementation of Main Components
	Types and Type Hierarchies
	Kripke Structures: States, Tuples and Relations
	Formulas
	Programs
	Model Checker

	Input and Output
	Input from LKB and TRALE
	LKB
	TRALE

	Formula Parser
	XML Serialisation of Java objects

	Graph Visualisation
	Prefuse Graph Visualisation
	Visualising Kripke Structures
	Data Transformations
	Visual Mappings
	View Transformations

	Visualising the Type Hierarchy

	GUI
	Project Tree
	Import and Export
	Theory
	Models
	Type Hierarchy
	Model Checker

	Conclusions

