
Department of Computer Science, Goethe-Universität Frankfurt am Main

Functional Programming

winter semester 2022/2023

Supervisor:

Prof. Dr. Manfred Schmidt-Schauß

Computing multi-distributions from

probabilistic call-by-need functional

programs

Nick Wagner

Frankfurt am Main

March 2, 2023

Acknowledgement

First of all, I would like to thank my thesis supervisor Prof. Dr. Manfred Schmidt-Schauß

from the Chair of Artificial Intelligence and Software Technology at the Johann Wolfgang

Goethe University for supervising me during my master’s thesis. He has my deepest

appreciation for the effort he has put into mentoring me, that he invested a lot of time in

giving me tips, for the proofreading, suggestions and ideas and was always open to my

questions and answered them when I ran into difficulties.

Finally, I must express my deepest gratitude to my parents and my friends for provid-

ing me with constant support and encouragement throughout my years of study and

through the process of researching and writing this thesis and also for proofreading. This

accomplishment would not have been possible without them. Thank you.

Statement of originality

I hereby confirm that I have written the accompanying thesis by myself, without contribu-

tions from any sources other than those cited in the text, references and acknowledgements.

This applies explicitly to all graphics, drawings, maps, program code and images included

in the thesis.

Contents

1 Introduction 1
1.1 Related Work . 2

1.2 Motivation . 2

1.3 Overview . 3

2 Program Calculus ΛPNeedR 4
2.1 Expressions E . 4

2.2 Context C . 5

2.3 Answers A . 6

2.4 Reduction Relation
sr−→ . 6

2.5 Variables . 7

2.6 Weighted reduction . 9

2.7 Program Calculus ΛPNeed . 10

3 Equivalence 11
3.1 Contextual Equivalence . 11

3.2 Expected Convergence . 12

4 Distributions 14
4.1 Distribution Equivalence . 15

4.2 Reduction on Distributions . 16

4.3 Distributions as Linear Equations . 17

4.4 Distribution Decomposition . 18

5 Recursion 20
5.1 Ω . 20

5.2 Black Hole ⊥ . 21

5.3 Y Combinator . 22

5.4 Direct recursion . 24

5.5 Dependent Graph . 25

5.6 Indirect Recursion . 27

6 Markov Chain 29
6.1 Transition Matrix . 29

7 Gaussian Elimination 33

8 Distribution to ΛPNeedR 38
8.1 dst to λPNeedR . 38

8.2 λPNeedR to λPNeed . 39

9 Interpreter 43
9.1 Functionalities . 43

9.2 Testing Expressions . 54

9.3 Discussion . 56

10 Conclusion 58

11 Appendix 59

Bibliography 62

1 Introduction

In recent years, research of probabilism in functional programmings has grown up. Func-

tional programming languages usually apply reductions to the program as long as the

program evaluates to a value. The result depends on the evaluation strategy that the

programming language takes into account and that is applied to the input. Due to the

quantization of all possible strategies that exists, there may an infinite set of results, which

makes reasoning a hard problem. In the literature, a common solution to this problem is, to

fix the strategy which is also known as strict evaluation. While call-by-value and call-by-

name are frequently researched strategies, this thesis attempts to study the call-by-need

strategy, which often is preferable when the performance is paramount.

Most functional programming languages use monadic functions as a foundation for random-

based computations. This makes perfect sense in some programming languages like Haskell,

where monads are implemented directly [1]. However, there is a much lower-level approach

to enabling probability calculus, which is to integrate probability calculus into the core of

the programming language by extending the lambda calculus with a probabilistic choice

operator. We investigate two versions of this operator. The first one models flipping a

fair coin, by choosing either the first or the second argument with a 50/50 chance. The

second offers the possibility of influencing the probabilities of the selection via a value.

Given such an operator, the evaluation of probabilistic expressions is not longer a single

deterministic value, rather than a distribution over all possible values.

Although the call-by-need strategy and the prob operator have been explored in many

articles, the combination of the strategy and the extension is the current subject of research.

The work is about improving the methods for computing distributions to provide a much

more detailed analysis of the programs and to create a basis for later developments within

functional programming, such as those required for AIs.

1

1 Introduction

1.1 Related Work

The probabilistic call-by-need calculus ΛPNeedR is the subject of current research. This

calculus extends the classical calculus of Alonzo Church with recursive let expressions

that enable sharing for call-by-need evaluation and a probabilistic operator ⊕p.

The article [2] deals with examining fundamental properties for that calculus that includes

contextual equality via the convergence behavior. Some program transformations are

shown and examined for correctness. Success can be recorded by proving a so-called

context lemma.

The most recent work [3] deals with the distribution equality of expressions in PCF, a

probabilistic call-by-need calculus that uses Church Numerals as answers. This article

shows that contextual and distributional equivalence coincide for closed expressions in

PCF.

A very closely related work, the bachelor thesis [4] shows, that it is not trivial to compute

the multi-distribution of a given program. A program may not stop evaluating due to

non-termination properties. The programming language ΛPneedR, which is the notation

used in this thesis as well, is defined given a probabilistic lambda calculus that with a set of

reduction rules that integrate recursive let expressions. In the article, multiple variations

of contextually equality within the probabilistic setup are worked out. The work uses

the Monte Carlo method to approximate the distributions of various expressions. This is

tested by a Haskell interpreter that implements the reduction of expressions combined

with weighted expressions.

1.2 Motivation

The computability of distributions for the lambda calculus ΛPNeedR is not a trivial under-

taking. Preliminary work has been done in [4], but in many cases it is doomed to failure. It

must be mentioned that not every program has an evaluation, which can be related to the

halting problem. Some expressions cannot be evaluated with the operational semantics

used in [4], although they have a simple result that can be obtained even by intuition. One

of the reasons for the failure of the calculations is recursion, which can result in a non-

finite evaluation. The assumption that programs are equal if their distributions are equal,

2

1 Introduction

called distributional equivalence, opens up new possibilities. Program transformations

can be designed that are justified based on their distributional equivalence, meaning that

programs with possibly non-finite evaluation can be replaced by distributional equivalent

programs. This provides a much deeper and more accurate analysis, since probabilities are

directly included in the evaluation process. The predictability of the distributions is also

an important aspect for deciding on the equality of programs, which is in causality closely

related to optimization.

1.3 Overview

Foremost, this thesis provides an introduction to the terms of program calculi, especially

the lambda calculi ΛLNeedR and its simplification ΛLNeed together with a set of reduction

rules that implements sharing and call-by-need evaluation to complete the definition of

a lazy programming language (chapter 2). It also introduces contexts and the reduction

strategy, namely standard reduction and program transformations in the form of operational

semantics. It becomes clear that the strategy fails for some expressions in the probabilistic

setup. Chapter 3 deals with variations of equivalence. Two variants are mainly used

throughout this work: Distribution and contextual equivalence. Chapter 4 introduces

probability distributions and points out, how they are computed. We introduce a set of

distribution rules to extract linear equations out of expressions. In chapter 5 we use the

previously defined rules to analyze the recursive behavior of the expressions. It can be

shown, that for some recursive programs, an evaluation in the notation of distribution can

be found, where the evaluation with the standard reduction will fail. This can be done by

extracting linear equations and dependent graphs from the expressions. The chapters 6

and 7 explain two approaches of solving the linear equations using Markov chains and

Gauss Elimination. Since the solution of these strategies is given by distributions, chapter

8 explains an algorithm, that transforms distributions back into distribution equivalent

expression of the calculus. Last but not least, Chapter 9 provides an explanation of a

Haskell interpreter. The interpreter is a demonstration of the methods developed so far

and shows their applicability in practice. A short discussion completes the thesis.

3

2 Program Calculus ΛPNeedR

The definition of pure functional programming languages is given by a program calculus

that is a 5-tuple (E , C, sr−→,A,L), where E is the set of all expressions, C are contexts that
specifies the strategy of evaluation,

sr−→⊆ E × E × L the reduction relation which defines

rewriting rules and simplification for expressions, A the set of answers, sometimes are

called values, which are expressions that can not be evaluated further, and finally L, the
set of labels, which are names assigned to each rewrite or reduction rule [5]. To implement

the call-by-need strategy and a probabilistic choice, the lambda-calculus ΛPNeedR that was

introduced in [2] is chosen. This lambda-calculus is an expansion of Alonzo Church’s

lambda calculus. It extends the calculus by the fair binary probabilistic choice operator ⊕p

and a recursive let, like the one that the programming language Haskell provides. This

enables the implementation of the call-by-need strategy with lazy evaluation and sharing.

The definition is done by specifying the 5-tuple. While E and C typically can be denoted as

a Backus-Naur-Form (BNF), the reduction rules, as well as answers and labels can simply

be easily listed.

2.1 Expressions E

The expressions of the calculus are defined by the given BNF:

s, t ∈ Expr ::= x | λx.s | (s t) | let Env in s | s⊕p t

Env ::= x1 = s1, ..., xn = sn

Let V ar be an infinite, countable set of variables. We denote variables with the letters

x, y ∈ V ar, expressions with the letters s, t ∈ Expr. An expression can either be a

variable (x), an abstraction (λx.s), an application (s t), a let-expression (let Env in s), or a

prob-expression (s⊕p t). The latter takes use of the infix operator⊕p that is introduced in [4].

This operator evaluates either the left argument with probability p or the right argument

4

2 Program Calculus ΛPNeedR

with probability 1 − p. [2] showed, that the operator is not associative, but distributive

and idempotent w.r.t. contextual equivalence. The let-expressions contain an environment
Env which is an unordered set [xi = si|i ∈ I] of assignments called definitions, that are in
the scope of the in-expression. For such an environment, the variables xi are called left
variables LV . To uniquely identify the definitions, they are provided with an index from

index set I and must be distinct. The definitions enable the lazy evaluation strategy by

storing results that can be shared when needed.

2.2 Context C

A general context C is an expression with exactly on hole [·], that is a placeholder for a
sub-expression that can be plugged into. By the definition, usually given as a BNF, the

possible position of the sub-expression are determined. This is an important feature during

the process of reduction, where contexts are used to show the position of the next redex
(short for reducible expression). Hence, they are the means of choice for specifying the

evaluation strategy. Given a context, an expression s can be substituted into the hole. This

is denoted by C[s]. We investigate general contexts C, reduction contexts R and application
contexts A by giving their BNF. These are required multiple times in this thesis.

C ∈ C ::= [·] | λx.C | (C t) | (t C) | (C ⊕ t) | (t⊕ C) | let env in C | let env, y = C in t

R ∈ R ::= A | let env in A | let env, {xi = Ai[xi+1]}ni=1, xn+1 = Anj+1 in t

A ∈ A ::= [·] | (A s)

Reduction contexts show the positions of the redexes during standard reduction and, thus,

define the lazy call-by-need strategy. Reducing the sub-expressions of reduction contexts

suffices to evaluate an expression and to conclude contextual equivalence, like [2] has

shown in the context lemma. General contexts mark every position that is a sub-expression.

They are also used to define contextual equality.

5

2 Program Calculus ΛPNeedR

2.3 Answers A

Answers are expressions A ∈ E , that are used to encode types. Given a list of answers,

the redexes of a reduction context are compared with the answers. Whenever the redex

matches an answer, the expression is assumed to be fully reduced. An example is the

church encoding, which encodes algebraic types throughout the lambda-calculus. Answers

can be Church Numerals, True and False etc. encoded in expressions, as they are used in

[3]. This thesis uses an untyped calculus with open expressions, since this is more general.

Nevertheless, there is a set of expression that is naturally a subset of the answers, WHNFs

namely.

2.3.1 WHNF

In general, a WHNF is an expression of a shape such that no reduction rule is applicable.

For this reason, it is a subset of A In calculi that do not implement sharing and lazy

evaluation, this is the case for abstractions of the form λx.s. In our case, the term of

WHNF must be adopted to the domain of ΛPNeed, since it is enlarged by let-bindings that

enables the implementation of sharing. It follows that expressions of form (let env in

λx.s) i.e. let-expression where the inner expression is an abstraction are not reducible

and belong to WHNF as well. In the untyped calculus, a program terminates or evaluates

successfully, if it reduces to a WHNF in a finite amount of standard reductions. In the

other case, the sequence of standard reduction is transfinite. Due to the nondeterminism

of the prob operator, an expression may have multiple reduction sequences that lead to

various results. We call set of all results that are WHNFs, i.e. there is a standard reduction

sequence s −→ ... −→ WHNF the evaluation of s denoted by Eval(s) [2].

2.4 Reduction Relation sr−→

Reduction relations sr−→⊆ E × E × L are used to step-wise simplify expressions and thus

define the operational, small-step semantics. For λPNeed we use the standard reduction

rules of figure 2.1 as laid out in [4]. The set of reduction relations rules must be complete,

which means that for all arbitrary expressions not in WHNF, there exists a relation rule

applicable. It follows that when no standard reduction is applicable, the expression must

6

2 Program Calculus ΛPNeedR

be in WHNF. The labels L are provided by the brackets to the left.

(sr,lbeta) R[((λx.s)t)] → R[let x = t in s]

(sr,probl) R[s⊕ t] → R[s]

(sr,probr) R[s⊕ t] → R[t]

(sr,lapp) R[((let env in s) t)] → R[let env in (s t)]

(sr,llet-in) let env1 in let env2 in s → let env1, env2 in s

(sr,llet-e) let {xi = Ai[xi+1]}n−1
i=1 , xn = (let env1 in s), env2 in A[x1]

→ let {xi = Ai[xi+1]}n−1
i=1 , xn = s, env1, env2 in A[x1]

(sr,cp-in) let {xi = xi+1}n−1
i=1 , xn = λy.s, env in A[x1]

→ let {xi = xi+1}n−1
i=1 , xn = λy.s, env in A[λy.s]

(sr,cp-e) let {xi = Ai[xi+1]}n−1
i=1 , xn = An[y1], {yj = yj+1}m−1

j=1 , ym = λz.s, env in A[x1]

→ let {xi = Ai[xi+1]}n−1
i=1 , xn = An[λz.s], {yj = yj+1}m−1

j=1 , ym = λz.s, env in A[x1]

Figure 2.1: Standard reduction rules from [2]

Often, there are laid out additional rules that are not necessarily required for reduction but

can be used for optimization. We like to mention the garbage collection rules (gc1) and

(gc2) from [2, 4], since they are proven to be sound and apply well to some expressions of

this work. Both rules remove definitions from the environment if they are not relevant to

the evaluation of the in-expression.

(gc1) let env1, env2 in s → let env1 in s if LV (env2) ∩ (FV (env1) ∪ FV (s)) = ∅
(gc2) let env in s → s if LV (env) ∩ FV (s) = ∅

Figure 2.2: Garbage collection rules from [2, 4]

2.5 Variables

Variables of an environment that are on the left side of assignments are called left variables
LV . More formal: x ∈ LV , iff ∃si such that xi = si ∈ env. In an expression, the variables

can occur either free or bound. A variable is bound, if it is the binder of an abstraction, i.e.

the variable x in λx.s, or when it is a left side of an assignment in the environment, (let

env in s) and x = si ∈ env. A variable is free, when it is not bound. For any expression,

7

2 Program Calculus ΛPNeedR

the set of bound variable BV (e) and the set of free variables FV (e) can be computed by

the following rules:

BV (x) = ∅
BV (λx.s) = {x} ∪BV (s)

BV (s t) = BV(s) ∪BV (t)

BV (Let env in s) = (BV(env) ∩FV (s)) ∪BV (s)

BV (s⊕ t) = BV(s) ∪BV (t)

BV (env) =

⋃
xi=si

{xi} ∪BV (si)

FV (x) = x

FV (λx.s) = FV(s) \{x}

FV (s t) = FV(s) ∪FV (t)

FV (Let env in s) = (FV(s) ∪FV (env))\BV (env)

FV (s⊕ t) = FV(s) ∪FV (t)

FV (env) =

⋃
xi=si

FV (xi)\
⋃

xi=si

xi

Figure 2.3: Definition of free variables FV and bound variables BV .

These computation rules are the conventional ones and have only been extended for the

cases of let and prob expressions. It should be stated, that the expression copied in a

(sr,cp-in) or (sr,cp-e) reduction contains variable names that conflict with other variable

names. The distinct variable convention (DVC) may be violated. In this case, a variable can

have free and bound occurrences at the same time, so FV (s) ∩BV (s) ̸= or free variables

can be captured, leading to an incorrect change of the expression’s semantics. To be safe,

we assume that the DVC is always satisfied, or perform an α-conversion implicitly.

2.5.1 α-conversion

In lambda calculus, two expressions are considered alpha equivalent if they differ only

in the choice of variable names. Two expressions s and t are α-equivalent if and only

if there exists a renaming that turns the expression into equal expressions by definition.

The α-conversion defines the rule of renaming the variables of an expression without

changing the meaning of a program. The distinct variable convention must be satisfied

8

2 Program Calculus ΛPNeedR

strictly. Otherwise, free variables may be captured by a renamed variable, changing the

meaning of the expression. Every time a variable is renamed, a fresh variable name is

chosen such that the DVC is satisfied. Later on, we take usage of alpha conversion for the

standard reduction rules (sr,cp-in) and (sr,cp-e). These rules copy expressions from one

into another. By that, the DVC might be violated.

2.5.2 Substitution

Substitution is the process of replacing all occurrences of a variable x by a variable x′
in

the expression s denoted by s[x′/x]. Sometimes, the notion of s[x −→ x′] is used, like in [6].

This might be preferable, as it is self-explanatory which variable is the replaced and which

is the replacing one.

Substitution is used to rename the variables during alpha conversion or when a definition

is replacing a variable during reduction.

2.6 Weighted reduction

The evaluation using the standard reduction rules 2.1 is non-deterministic. Reducing the

prob-operator yields in only one result that is either the sub-expression to the left or the

sub-expression to the right. It is analogue to the run of a random experiment. Because

the parameter p of the prob-operator is given, one can reason about the solution without

performing the non-deterministic reductions (sr,probl) and (sr,probr). Therefor, the two

sub-expressions on both sides are reduced at once and the probabilities are tracked. The

new reduction rule (⊕p) is the union of (sr,probl) and (sr,probr). In addition, the expressions

are provided with probabilities. This is called weighted expression.

Definition 1. A weighted expression is a pair (p, s) where p ∈ [0, 1] is a probability and s

an expression. If the notation does not lead to misunderstandings, the shorter notation of

ps can be used interchangeably.

We supplement the reduction definition in such a way that the reduction result is provided

as an weighted expression. For non-prob-reductions s
sr,a−−→ t and a /∈ {probl, probr}, the

probability stays unchanged, for prob-reductions there are two weighted expressions. For

collecting all possible results, probability distributions are used.

9

2 Program Calculus ΛPNeedR

(⊕p) R[s⊕p t] → [pR[s], (1− p)R[t]]

Figure 2.4: Reduction rule ⊕p

Now, the result for prob-expressions are not longer a single element rather than a distribu-

tion. The reduction step is now deterministic. To simulate the non-deterministic standard

reduction in retrospect, a single expression can be sampled from the distribution by a

function that uses a random generator afterward. The standard reduction rules have to be

adopted to work on distributions as an input. Since distributions are covered in chapter 4,

we’re postponing this for now.

2.7 Program Calculus ΛPNeed

Calculus ΛPNeed is a simplification of the calculus ΛPNeedR. It only differs in the definition

of the prob operator that does not provide the parameter p and hence can not be biased.

Instead, the probability of p is fixed to a constant value of
1
2
. Thus, one can abbreviate the

notation to s⊕ t by omitting the p. Since this can easily be simulated in ΛPNeed ⊆ ΛPNeedR

holds. The reduction rule must be adopted too, as shown in 2.5. Later, it is shown, that

expressions from ΛPNeedR can also be simulated in ΛPNeed. The other direction is trivial.

(⊕) R[s⊕ t] → [1
2
R[s], 1

2
R[t]]

Figure 2.5: Reduction rule ⊕

10

3 Equivalence

The notion of equality must first be defined, since equality depends on different measures

that strongly depends on the respective context. For example, the equality can be defined

on the number of computational instructions during the evaluation process, even if this

makes little sense in most of the cases. Then two programs would equal, if they share the

same number of operations. In the scope of this thesis, we use contextually equivalence ∼C

and distribution equivalence ∼D as the measure of all things. Before we delve into this, we

give a brief overview of equivalences that are commonly used to elucidate the connections.

Clarify the differences to contextual equivalence.

Semantic Equivalence

The semantics of a program is given by the evaluation strategy [1]. Accordingly, two

programs are semantically equivalent if they are the same with regard to all evaluation

strategies. [7] states, that it implies operational equivalence but not vise versa. In this

thesis, we will only focus on the call-by-need strategy and will therefore not use semantic

equivalence as a criterion for equality.

Operational Equivalence

Two terms are operationally equivalent if either can be removed from a program and

replaced by the other without altering the behavior of the program. The behavioral

equality coincide with denotational equality [7].

3.1 Contextual Equivalence

Contextually equivalence is weaker than operational and semantic equivalence, since it

only compares the behavior of two different programs or expressions within a specific

11

3 Equivalence

evaluation strategy that defines the semantics. Two expressions are contextually equivalent

if and only if the expected convergence of the expressions plugged into any program context

is always the same [2]. Thus, contextual equivalence implies operational equality. The

other direction does not hold.

Definition 2 (Contextual Equivalence). Let s and t be expressions. Let s ≤C t be the

contextual approximation and its symmetry s ∼C t denote the contextual equivalence.

s ≤C t iff ExCv[C[s]] ≤ ExCv[C[t]] with p ≤ q

s ∼C t iff s ≤C t ∧ s ≥C t

Here, ExCv denotes the expected convergence. In [2] was shown, that this measure suffices

to argue contextually equivalence.

3.2 Expected Convergence

Expected convergence of an expression s, denoted by ExCv(s), is the probability of an

expression being evaluated to a WHNF. For a deterministic program, there are two options:

The evaluation either reduces to a WHNF in finite amount of reduction stepsExCc(s) = 1,

or the reduction sequence is transfinite ExCv(s) = 0. In contrast, probabilistic programs

can evaluate to multiple results. The evaluation is a distribution over multiple expressions.

Now, the expected convergence is summed up for all the evaluations being in WHNF,

weighted by their probability.

ExCv(s) =
∑

(pi,si)∈Eval(s) pi

In the probabilistic setup, we replace observing termination with observing the expectation

of termination i.e. the limit of the sum of the probabilities of all successful evaluations,

where contextual equivalence holds, if this expected termination is the same for C[s]

and C[t]. It is known, that the observation of expected convergence is sufficient to state

contextually equivalence. This holds because of the quantization of contexts, it is always

possible to find a context that makes the differences between the expressions recognizable

by modifying the probability of convergence [2, 3].

12

3 Equivalence

There is another equivalence, namely distribution equivalence, that is of interest in our

context. Since distribution equivalence requires the knowledge of distributions and is

defined within the next chapter 4.

13

4 Distributions

By extending the probabilistic operator ⊕p, the result of a program is not a deterministic

result but a probability distribution over all possible results. The equality of programs can

now be argued by distributive equivalence. For example, [3] showed, that contextually

equivalence implies distributive equivalence in a calculus called PCF, which is simply typed

and uses Church encoding. If this applies to other languages too, like our untyped calculus

with open expressions, is still an open question. In order to compare distributions, the

distributions must be computed first. There are expressions for which the evaluation fails

even though an intuitive solution is available. There exists several reasons for this. The

first is founded in the halting problem. It is undecidable whether the evaluation of an

expression will be caught in an infinite loop. Thus, the program must evaluate all results

to be able to compare them. If only one of the results is transfinite, the evaluation will not

terminate. But infinite loops may be a desired element of some programs. Besides that,

some expressions can produce infinitely long distributions that can not be computed on

real-world machines that have finite amount of storage, and others can be recursive such

that the standard reduction can not evaluate them in finite time. The latter case may be a

lack of transformation rules that do not take recursion into account. One goal of this thesis

is the development of an evaluation strategy, that can evaluate expressions which are not

reducible with standard reduction. First of all, we provide the definition of distributions,

whereby we stay close to the notion of [4, 8].

Definition 3 (Distribution). A distribution dst(s) of an expression s is a unordered set

[(pi, si)|i ∈ I] of weighted expressions (pi, si) over the index set I where pi ∈ [0, 1] being

the probability of si. The probability sum bounded by

∑
i∈I pi ≤ 1 and all si must be

distinct.

Definition 4 (Multi-Distribution). A multi-distribution mdst(s) of an expression s is a

finite, unordered set of tuples [(pi, si)|i ∈ I] of weighted expressions (pi, si) over the

14

4 Distributions

index set I where pi ∈ [0, 1] being the probability of si. The probability sum bounded by∑
i∈I pi ≤ 1. Inmdst an expression si can be contained multiple times.

Definition ofmdst is similar to the one of dst. The difference is, that inmdst the si can

occur more than once, e.g. every single evaluation that result contains si can have its

own WEP in the mdst. A dst can be obtained from a mdst by grouping all equivalent

entries and summation of their probabilities. This does not work in practice, because it

is not possible to decide which expressions are equivalent in general [2]. It follows that

dst ⊆ mdst. The other direction is not guaranteed in practice.

4.1 Distribution Equivalence

Two expressions s and t are distribution equivalent, if their distributions are equal.

Definition 5 (Distribution Equivalence). Let s and t be expressions, and let (pisi) ∈
Eval(s) and (qjtj) ∈ Eval(t) the weighted expression pairs of WHNFs in the evaluations.

Distribution approximation s ≤D t and distribution equivalence ∼D hold like follows:

s ≤D t iff ∀si ∃tj with si ∼C tj ∧ pi ≤ tj

s ∼D t iff s ≤D t ∧ s ≥D t

This means that every expression in one of the distributions has an equivalent in the other

distribution, and they have the same probability. This definition can also be extended

to work on multi distributions. Then the probability sum of all contextual equivalent

expressions must be equal in both distributions.

The way distribution equivalence is defined automatically implies contextual Equivalence.

In other words, contextual equivalence of an expression can be shown by verify distribu-

tional equivalence. In order to compare two programs based on their distributions, the

distributions must be able to be calculated. This is a challenging task and will be researched

throughout the next sections.

15

4 Distributions

4.2 Reduction on Distributions

In order to compute multi-distributions on expressions, the standard reduction has to be

adopted to work on distributions. This can be done with the lifting ⇒ like it is provided as

rules set out in [4]:

[s] ⇒ [s]
L1

s −→ m

[s] ⇒ m
L2

∀i ∈ I : [pisi] ⇒ mi

[pisi|i ∈ I] ⇒
∑

i∈I pimi

L3

This lifting lets the standard reduction apply to the elements of distributions. The output

then is also a distribution. When the initial distribution only consists of a single element

(pi, si), two cases occur: an si is in WHNF, L1 could apply, and no standard reduction

is performed. Otherwise, when si is reducible, L2 applies, when the initial distribution

consists of many weighted expressions (pi, si). The weighted reduction can be applied by

isolating the weighted expressions from the distribution, performing a standard reduction

afterwards, and reassemble the distribution by concatenating all the results. Since a dis-

tribution contains |I| many expressions si, the same number of standard reductions can

be performed every reduction step of⇒ at once theoretically. For the sake of simplicity,

we don’t want to distinguish between the lifting and standard reduction from now on and

write→ as the union of both reductions, assuming, that the right rules is chosen implicitly.

We call a distribution dist(s) to be in WHNF when all expressions si are in WHNF .

Some of the expression si may divergent. A common practice is to drop them out of the

distribution and add a placeholder (q,⊥)with q = 1−
∑

i∈I pi. Since divergent expressions

can neither be distinguished nor have any measurable properties, this does not result in

any loss of data. ⊥ is explained in Section 5.2 more detailed. The expected convergence of

distributions than is the sum over all probabilities pi where si is in WHNF .

ExCv[dst(s)] = ExCv([pisi|i ∈ I]) =
∑

si∈WHNF pi

The comparison dst(s) = dst(t) is not applicable in practice because finding all equivalent

values is undecidable [2]. This is easy to see using the following example from [1] that

uses church encodings.

16

4 Distributions

(Y (λx.λy.(y ⊕ (x (succ y))))) 0

This expression applies two different operations with a probability of 0.5 each. Either it

outputs the argument or it calls itself recursively with the argument incremented by one.

This results in a distribution

[
1
2
1, 1

4
2, 1

8
3, ...

]
of transfinite length which can neither be

compared nor computed using operational semantics as they inherently ascribe finiteness.

For this reason we put these expressions aside and in this thesis concentrate on computable

expressions and their distributions. This although implies that one can convert themdst

to dst and hence we use "distribution" (dst) as a synonym for both from now on.

4.3 Distributions as Linear Equations

It is a challenging task to compute the distributions for an expression. We start simple by

providing axiomatic statements, for which the distributional equivalence is obvious. Later

on, we work out a bunch of transformation rules that operate on distributions. We will see

that this workaround provides more freedom during the calculation of distributions. We

begin with an axiom that states the distribution equivalence of an expression compared

with its distribution and WEP.

dist(s) = [s] (4.1)

[s] is the short form of [(1, s)] This must follow from the weighted reduction of length 0.

With this, we can show, that the distributions can be denoted like linear equations. This is

shown in figure 4.1, by applying the concatenation rule, the point-wise multiplication and

the axiom 4.1 sequential. Later we will often use this form of notation when calculating

with distributions become necessary, and the notation is quite practical in our opinion.

An environment becomes a system of linear equations.

env = [xi = si|i ∈ I] = [dst(xi) = dst(si)|i ∈ I]

In former research of [4], the point-wise multiplication k · dst with a scalar k and the

concatenation dst1 + dst2 defined on distributions are described. We complement the

arithmetic operators with division, that can be simulated by the point-wise multiplication

17

4 Distributions

dst(s) := [pisi|i ∈ I]

= [p1s1, ..., pnsn]

= [p1s1] + ...+ [pnsn]

= p1 [s1] + ...+ pn [sn]

= p1s1 + ...+ pnsn

Figure 4.1: Derivation of distributions for linear equations

using the reciprocal of the scalar, subtraction by changing the signs and the cross product

of two distributions that is the pairwise application as shown below.

dst
k

= 1
k
· dst

dst1 − dst2 = dst1 + (−1) · dst2
dst1 · dst2 =

∑
(pi,si)∈dst1,(qi,ti)∈dst2 piqi(si ti)

Figure 4.2: Arithmetic operators on distributions

At this point, arithmetic operators and precedence rules can be applied as usual. One may

wonder about the negative probabilities that may appear. This contradicts with the norms

of probabilities, but is not harmful when the overall result meets the requirements.

4.4 Distribution Decomposition

In some cases, a definition of an expression can be decomposed into a sum of distributions

for sub-expressions. We introduce a set of distribution decomposition rules you can find in

figure 4.3 that can be applied without performing reductions.

The last expression enables many is by far the trickiest and is developed in the next chapters.

These rules do not reduce the expressions, but act like a backtracking of probabilities over

the tree of evaluation paths. Poorly, the backtracking stops whenever an abstraction is in

scope, since abstractions only resolves, when they are needed. A rule for abstractions was

considered, but turned out to be wrong soon. The inequality can be shown, providing a

counterexample from [2].

dst(λx.s) ̸= [p1λx.dst(s1), ..., pnλx.dst(sn)]

18

4 Distributions

dst(x) = [x]

dst(λx.s) = [λx.s]

dst(s t) = dst(s) · dst(t)
dst(s⊕p t) = p · dst(s) + (1− p) · dst(t)
dst(let env in s) = [let env in s′]

where s′ = s[xi 7→ dst(si)] ∀i ∈ I

Figure 4.3: Distribution Decomposition Rules

Assume the rewrite rule is correct, both sides are equal and let s1 and s2 be two expressions.

s1 := let f = λx.λy.x⊕ λx.λy.y in f (f x1 x2)(f x3 x4)

s2 := let f = λx.λy.x⊕ y in f (f x1 x2)(fx3 x4)

Since the distributions of both expressions would calculate to f =
[
1
2
λx.λy.x, 1

2
λx.λy.y

]
,

both expressions assume equal. But performing standard reduction on both expressions

leads to e1 =
[
1
2
x1,

1
2
x2

]
and e2 =

[
1
4
x1,

1
4
x2,

1
4
x3,

1
4
x4

]
. Since both distributions are

different, the assumption is violated.

The differences can be explained by the order of evaluation and is in fact an issue of the

call-by need-evaluation. In e1 the function is evaluated first. The result of f is then copied

three times into the in expression. The standard reduction rules (sr,cp-in) and (sr,cp-e)

can perform copy operations for common. Therefore, every copy is the same. In contrast,

the definition of f in e2 wraps the prob operator into the abstractions, so the expression

already exists as a WHNF. It is copied three times before it can be evaluated. Hence, every

occurrence of f is evaluated independently and can lead to different results. A real-world

analogy is the difference between rolling two dice in contrast to multiplying a dice roll

by 2. As a conclusion to the previous observation, abstractions must be maintained as

they occur in the environment. Nevertheless, the distributive rules can be applied to the

definitions recursively.

19

5 Recursion

There exists certain categories of λ-terms that can not be evaluated by the previous intro-

duced techniques. One set that hold this property is explained in [9] namely the set Λ∞

of infinite λ-terms. These terms may be transfinite in the length of input, which in turn

means, that the sequence of reduction must be trans-finite as well. In this section we will

not discuss the properties of those, since these are quite impractical and the discussion

would be beyond the scope of the thesis. We will notice that the class of recursively defined

λ-terms is also infinite with respect to standard reduction, but offers more possibilities in

the evaluation process.

The operational semantics discussed above are limited because evaluation fails for many

expressions that even have a valid meaning. Mainly responsible are infinite reduction

sequences that can arise through recursion. In the introduction to this chapter, certain

recursive examples are given for which the evaluation fail.

5.1 Ω

The expression Ω = λx.(x x) λx.(x x) is a prominent function that does not evaluate.

Nevertheless, we show the first reduction steps using our introduced operational semantics

to clarify the problem.

20

5 Recursion

Ω

= (λx2.(x2 x2)) (λx1.(x1 x1))
sr,lbeta−−−−→ let x2 = λx1.(x1 x1) in (x2 x2)
sr,cp−in−−−−−→ let x2 = λx1.(x1 x1) in ((λx3.(x3 x3)) x2)
sr,lbeta−−−−→ let x2 = λx1.(x1 x1) in let x3 = x2 in (x3 x3)
sr,llet−in−−−−−→ let x2 = λx1.(x1 x1), x3 = x2 in (x3 x3)
sr,cp−in−−−−−→ let x2 = λx1.(x1 x1), x1 = x2 in ((λx4.(x4 x4)) x3)

...

sr,llet−in−−−−−→ let x1 = λx2.(x2 x2), x2 = x1, ... , xn−1 = xn in (x2 x2)

...

It is easy to see, that the reduction runs into a periodic behavior. In every three reduction

steps, the expressions are alpha-equivalent repetitively and an assignment xi − 1 = xi

is added that exactly reflects the renaming of the α-conversion. Note that the alpha-

equivalence yields from the renaming we perform after every (sr,cp-in) reduction to guar-

antee the DVC.

5.2 Black Hole ⊥

Another prominent expression is the black hole ⊥.

⊥ = let x = x in x

This expression embodies non-termination and is used for replacing other expressions that

share the property of non-termination. Non-terminating expressions are interchangeable

without changing the meaning of a program, since the property of non-termination is

the only observable in this type of expression. For this reason, other non-terminating

expressions are often replaced by the black hole, since it offers the simplest implementation

of non-termination. When trying to reduce this expression using standard reduction, the

variable x of the in-expression is in the scope of the reduction context. The (sr,cp) rules

21

5 Recursion

may apply. Thus, the reduction tries to find the expression at the end of a variable chain or

context chain. This will fail for the black hole, because the chain {x = x}∞i=1 is of infinite

length. With the rules of distributions stated so far, recursion can be removed in some

cases without the need for reduction. Linear equation can be extracted out of a definition

with the rules of figure 4.3. Applying this on ⊥, we get the following result:

dist(x) = dist(x)

= x = x | − x

= 0 = 0

The linear equation has no solution, as is to be expected for a divergent expression like ⊥.

5.3 Y Combinator

The fixpoint combinator Y is a well known function. It is often used to implement recur-

sion in calculi, that does not offer recursion native. The Y Combinator implements self

application of a function f .

Y = λf.λx.f (x x) λf.λx.f (x x)

Y f results in the infinite sequence of self application f (f (f (...(Y f)...))). The operational

semantics again fails to reduce those expressions. But depending on the function f , there

can be expressions that are logically solvable, like shown below.

Example 1.
Y λx.(x⊕ t)

∼d let x = x⊕ t in x

This expression points out to be probabilistic convergent and converges to twith probability

1. But this function contains recursion and hence can not be evaluated using the operational

semantic used so far.

22

5 Recursion

Y λx.(x⊕ t)

= (λf.(λx2.f (x2 x2)) (λx1.f (x1 x1))) λx.(x⊕ t)
sr,lbeta−−−−→ let f = λx.(x⊕ t) in (λx2.f (x2 x2)) (λx1.f (x1 x1))
sr,lbeta−−−−→ let f = λx.(x⊕ t) in let x2 = λx1.f (x1 x1) in f (x2 x2)
sr,llet−in−−−−−→ let f = λx.(x⊕ t), x2 = λx1.f (x1 x1) in f (x2 x2)
sr,cp−in−−−−−→ let f = λx.(x⊕ t), x2 = λx1.f (x1 x1) in (λx3.x3 ⊕ t (x2 x2)
sr,lbeta−−−−→ let f = λx.(x⊕ t), x2 = λx1.f (x1 x1) in let x3 = (x2 x2) in (x3 ⊕ t)
sr,llet−in−−−−−→ let f = λx.(x⊕ t), x2 = λx1.f (x1 x1), x3 = (x2 x2) in (x3 ⊕ t)
sr,prob−−−−→

[
1
2
let f = λx.(x⊕ t), x2 = λx1.f (x1 x1), x3 = (x2 x2) in x3,

1
2
t

sr,cp−in−−−−−→
[
1
2
let f = λx.(x⊕ t), x2 = λx1.f (x1 x1), x3 = (x2 x2) in (x2 x2),

1
2
t

sr,cp−in−−−−−→
[
1
2
let f = λx.(x⊕ t), x2 = λx1.f (x1 x1), x3 = (x2 x2) in (λx4.f (x4 x4) x2),

1
2
t

sr,lbeta−−−−→
[
1
2
let f = λx.(x⊕ t), x2 = λx1.f (x1 x1), x3 = (x2 x2) in let x4 = x2 in f (x4 x4),

1
2
t

sr,llet−in−−−−−→
[
1
2
let f = λx.(x⊕ t), x2 = λx1.f (x1 x1), x3 = (x2 x2), x4 = x2 in f (x4 x4),

1
2
t

...

We can observe similarities to the reduction of Ω, but the periodic appearance of terms

can only be found in sub-expressions. We explicitly mention the omission of some of the

definitions in the environment that belongs to the expression t for better readability. This

is sound due to the garbage collection rules (gc1) and (gc2) one can find in [2, 4]. The

distribution is infinite and therefore can not evaluate fully. However, approximations can

be computed, like the Monte Carlo strategy of [4] does. This observation has enormous

impact for the comparability of expressions, since only accurately measured distributions

can be checked for equality. However, this compromise, which allows for the inaccuracies

of approximations, is not in the spirit of this work. A more accurate analysis of the Y

λx.(x⊕ t) expression can take place in the mathematical sense by structural analysis of

repetitive pattern. In our example, we apply geometric series. The resulting expression

then will converge to t with probability 1.

23

5 Recursion

∼D [1
2
Y λx.(x⊕ t, 1

2
t]

∼D [1
2
[1
2
[1
2
[...], 1

2
k], 1

2
t], 1

2
t]

= [(1
2
+ 1

4
+ 1

8
+ ...)t]

= t

The accurate distribution can now be used to check distribution equality with other

programs. Deriving this solution by hand is not particularly difficult and can be solved

by just apply geometric rows to the prefactor of t. It is even obvious that the programs Y

λx.(x⊕ t) and t are equal in a semantic manner, which becomes clear with the following

analogy: Flip a coin. If head is up, repeat the flip (represented by λx.x), otherwise stop. At

some point, "number" (represented by t) has to be up by arbitrary high probability, since it

converges to 1 in the limit of the flips. However, it is very frustrating to formulate rules, or

even to implement program code for solving strategy like presented. This is due to the

quantity of possible functions, which requires individual solving methods. The question

arises, whether a solution can always be computed. We know, the expression Ω is not even

computable. There is a large set of expression, that behave similar. It turns out that this is

again related to the halting problem and thus not decidable in general. Nevertheless, in

chapter 6 and 7 is shown, that for some expressions like the last example, a solution even

can be computed automatically.

5.4 Direct recursion

Again assume example 1. The evaluation using standard reduction has a transfinite reduc-

tion sequence. By decomposition of the distributions the resulting equation system can be

solved.

x = x⊕ t in x

∼D x = dst(x⊕ t)

∼D x = 1
2
dst(x) + 1

2
dst(t)

∼D x = [1
2
x] + [1

2
t]

∼D x = 1
2
x+ 1

2
t

24

5 Recursion

Then the definition of x can be simplified, since its definition contains itself.

x = 1
2
x+ 1

2
t | − 1

2
x

∼D
1
2
x = 1

2
t | · 2

∼D x = t

After that, the definition x = t will replace the old expression and the recursion is solved.

In chapter 8 we show, how the distribution can be converted back into an expression of

λPNeedR. We conclude the observations of this direct form of recursion by stating a general

rule.

Direct recursion can be found in environments, where the distribution of a definition

contains its left variable itself.

x1 = [p1x1, p2x2, ..., pnxn] ⇔ x1 =

{
1

1−p1
[p2x2, ..., pnxn], for 0 ≤ x < 1

⊥, for p1 = 1
(5.1)

If the probability of self occurrence is 1, the equation is a black hole. If the probability of

the self occurrence is smaller than 1, the variable can be removed from the distribution.

To maintain the value of expected convergence, the probabilities of the remaining expres-

sions aremultiplied by a scalar. Proof: This follows by simply applying arithmetic operators.

x1 = [p1x1, p2x2, ..., pnxn] | − [p1x1]

(1− p1) x1 = [p1x1, p2x2, ..., pnxn] | 1
1−p1

x1 = [p2
1−p1

x2, ...,
pn

1−p1
xn]

□

5.5 Dependent Graph

The definitions in an environment may contain variables that are dependent to other

definitions, i.e. the definition contains other left variables. For example, the standard

25

5 Recursion

reduction rule (sr,cp-in) use those to traverse through the definition to find the end of a

chain of dependencies. We distinguish two kinds of chains: variable chains {xi = xi+1}n−1
i=1 ,

where the expressions of the definitions are given by a single binder variable. context chains
xi = Ai[xi+1]

n−1
i=1 , where the left variables are in the scope of the application contexts Ai.

These are part of (sr,cp-e) and (sr-llet-e). These chains represent sequences of variables.

However, in the probabilistic setup, these chains can be forked due to the prob-operator

with different probabilities, or it can be joined by invoking a common variable frommultiple

definitions. We want to emphasize again that the prob-operator produces a probability

distribution over the dependencies. We define a dependency as follows:

Definition 6 (Dependency of Environmental Variables). We say a binder variable xi to be

dependent of a binder variable xj s, iff (p, sj) ∈ dst(xi) for all arbitrary p.

Again, computing dst(s) of an expressions s is undecidable in general. This means, that

not all dependencies can be recognized. Invoking the distribution decomposition rules

4.3 is a compromise that is used in the interpreter implemented besides this thesis. Since

the dependencies are present in an n-to-n relationship, a directed graph or forest called

Dependent Graph can be used to represent them.

The dependencies stated so far can be visualized using directed graphs. The prob-operator

forks the path of reduction. For the definitions in an environment, this means that a

definition can depend on several left variables LV . Then, si is dependent to all left

variables that occur in dst(si) as an individual. To bring the distributions into a form, that

the left variables occur as single elements, the distribution decomposition rules 4.3 can be

applied. Let X be the set of all left variables. Let Si = dst(si) be the decomposition of the

environmental expression si. Then, the set of nodes V of the dependent graph are given

by the union of X and all environmental decomposition Si.

Si = dst(si)

X =
⋃

i∈I xi

V = X ∪
⋃

i∈I Si

T = V \X

We call a node t ∈ T a terminal, if it is a node, that is not a left variable, since it has no
definition and hence no dependency to other LV s. An edge eu,v = (u, v) with u, v ∈ V

26

5 Recursion

exists if and only if v is contained in the definition of u and hence u ∈ X follows. An edge

weight w(ei,j) is the probability of u evaluates to v. Notice that the sum of all outgoing

edges is limited to 1. In our setting, a potential node P (x) then is the overall probability

distribution that one can obtain for the variable x. The resulting graph may be connected

or can be decomposed into n components C = {C1, ..., Cn}. In the latter case, we only

require the component Ci that is connected to x when computing P (x).

Example 2. let x1 = t1 ⊕ x2, x2 = t2 ⊕ x1 in x1

x1

t1 x2

t2

0.5 0.5

0.5

0.5

Figure 5.1: Dependent graph of example 2

The left variable x1 of example 2 is dependent to x2 and connected with an edge weight of

1
2
, since the expression pair (1

2
, x2) occurs in the distribution of x1.

dst(x1) = dst(t1 ⊕ x2) =
[
(1
2
, t1), (

1
2
, x2)

]
.

5.6 Indirect Recursion

Applying the direct recursive rule 5.1 would not suffice to remove recursion in general.

For indirect recursive examples like the example 3, the left variables do not occur in the

distribution of their distribution.

Example 3. let f = a⊕ g, g = f ⊕ b in f

This time, the environment has multiple left variables. In general, the distributions behave

like homogeneous systems of linear equations. By substituting g into the definition of f the

environment becomes direct recursive. Using the rule 5.1 solves the system of equations.

27

5 Recursion

f

a g

g

f b

let x1 = t1 ⊕ x2, x2 = t2 ⊕ x1 in x1

Figure 5.2: Indirect recursive environment

f

a g

f b

let f = a⊕ (f ⊕ b) in f

Figure 5.3: Direct recursive environment

f = dst(a⊕ (f ⊕ b))

f = [1
2
a, 1

2
(f ⊕ b)]

f = [1
2
a, 1

4
f, 1

4
b] | − 1

4
f

3
4

f = [1
2
a, 1

4
b]

f = [2
3
a, 1

3
b]

For some expressions, the existence of mutual dependencies of the definitions makes it

impossible to eliminate the indirect recursive function calls of f and g, since they will

always appear alternately when they are substituted into each other.

Example 4. let x1 = x2 ⊕ x3, x2 = t1 ⊕ t3, x3 = x2 ⊕ t2 in x1

x1

x2

t1

x3

t2

1
2

1
2

1
2

1
2

1
2

Figure 5.4: dependent graph of example 4

In example 4, the variables x2 and x3 are dependent on each other. Substituting the

appropriate equations into the definition of x1 always shows the other reciprocal variable.

Thus, a technique for solving equation systems is required. Such strategies are discussed

in the chapters 6 and 7.

28

6 Markov Chain

A Markov chain is a stochastic model to simulate state transitions that occur with certain

properties. The state transition is given by a transition matrix P , i.e. a stochastic matrix,

with the row-sum of 1. By multiplying the matrix on an initial state vector, a transition

step is simulated. Multiplying the k-power of the matrix to the initial state simulates k

steps at once. The limit of transition steps is of interest, as it includes the potential P () of

a left variable.

6.1 Transition Matrix

To get an efficient notation for the algorithmic level, a transition matrix P can be extracted

from the environment. P is similar to the matrix one would construct from the dependency

graph, but with small changes. This matrix is a stochastic matrix for which the row sum

equals 1. To ensure this, self-loops may be added to the nodes. First, all the variables in

the environment are collected and indexed in a vector v⃗ = v1, ..., v(n+m). Note that the

order of the variables can be arbitrary, since the set of assignments is not ordered. But be

aware, once the order of variables are chosen, they must be maintained, because it will

associate the row of the matrix with the expressions of V . Remind, that X is the set of all

left variables xi with 1 ≤ i ≤ n and T be the set of all terminals tj with 1 ≤ j ≤ m. For

simplification, we set v⃗T = (x1, ..., xn, t1, ..., tm) such that the binder variables are leading

the terminals. The procedure takes the environment env as an input and computes the

transition matrix like described from the following imperative pseudo algorithm:

P is first assigned by the (n+m)× (n+m) identity matrix. Thus, all row sums are equal

to 1. Whenever a dependency is found for a left variable, the property of a transition is

subtracted from the self-loop and added to the corresponding column. In this way, the

terminals also receive a transition with the sum 1 in the form of a self-loop. This can be

notified in the visualization as a graph where, in contrast to the dependent graph, the

29

6 Markov Chain

transitionMatrix(env):
// initialize P
P = identityMatrix(n+m,n+m);

// populate matrix P
forall (x_i = s_i) in env:

forall (p_jv_j) in dist(s_i)
P_{i,i} -= p_j
P_{i,j} += p_j

return P

Figure 6.1: Imperative pseudoalgorithm for computing the transition matrix

transition graph strictly adheres to the property that the outgoing edges have a common

edge weight of 1.

Revisit the expression from example 2. The difference between the dependent graph ??
and the transition graph ?? can be found in the self-loops. Using the expression of example

2 again, the transition graph adds self-loops to the terminals.

x1

t1 x2

t2

1
2

1
2

1
2

1
2

1

1

let x1 = t1 ⊕ x2, x2 = t2 ⊕ x1 in x1

Figure 6.2: transition graph of expression 2

let x1 = t1 ⊕ x2, x2 = t2 ⊕ x1 in x1 from example ??. the probability distributions are

calculated first using the distribution rules.

let x1 = [1
2
t1,

1
2
x2], x2 = [1

2
t2,

1
2
x1] in [x1]

Let vector v⃗ be chosen as follows:

v⃗ =
[
x1 x2 t1 t2

]
Then the respective transition matrix is shown in ??

30

6 Markov Chain

P =

0 0.5 0.5 0
0.5 0 0 0.5
0 0 1 0
0 0 0 1

Figure 6.3: Transition matrix of example 2

The transition matrix can now be used to calculate the probabilities of the variables and

terminals. In this first approach, a state-based simulation is applied, which is implemented

using Markov chains. The stochastic matrix P required and can be assigned by the

transition matrix we have computed so far. Additionally, the vector p0 being the initial

state is required. To calculate the distribution of P (xi) the initial vector p
0
is set to 0⃗ except

for position i that is set to 1. Note that v can be omitted since it occurs on both sides,

but this again clarifies, that the variables belong to the rows. When the initial vector is

applied to the stochastic matrix, a state transition occurs. The number of state transitions

performed can be determined by the power n of the matrix P .

IiP
nv = pnv (6.1)

pnv is the probability distribution of the potential P (xi) if Ii is the i-th row of the |v| × |v|
identity matrix. Thereby, a row of the identity matrix embodies the initial state of the

transition experiment. The matrix multiplications simulate the flow of evaluation paths

going through a chain of n different assignments. The probabilities of the variables to the

end of the chains were approximated. Computing the limit of n is a very hard problem, and

usually it gets approximated since it does not exist in general. Sadly, Markov Chains are not

suitable for the comparison of distributions, since the imprecision does not remove recursive

variables fully. Nevertheless, the method could be still beneficial for approximation, because

the result is very precise even for small n and offers a runtime advantage in contrast to

other approximation methods, e.g. the Monte Carlo method used in [4], which evaluates

the expression with standard reduction a thousand times for precise results. One solution

is, to hide those weighted expressions whose probability falls below a precision threshold.

This method is tested in 9.

Example 5. let x1 = t1 ⊕ x2, x2 = t2 ⊕ x1 in x1

31

6 Markov Chain

P =

0 0.5 0.5 0

0.5 0 0 0.5

0 0 1 0

0 0 0 1

p0 =

[
1 0 0 0

]
p1 =

[
0 0.5 0.5 0

]
p2 =

[
0.25 0 0.5 0.25

]
p3 =

[
0 0.125 0.625 0.25

]
p10 =

[
0.0009765625 0 0.666015625 0.3330078125

]
The environment can be reassembled when the vectors are substituted into the equation

6.1. It is multiplied by v which contains expressions and thus the resulting vector is a

distribution. We can observe that the values converge rapidly when increasing n. Sadly,

some of the recursive variables are not vanished fully, and the method does not gain any

advantage. An interesting observation made in 9, that these expressions are not even an

approximation, but an equivalent representation of the expression. In the next section,

we’ll compute the exact result for this example and see, that this is not far from what this

process produced.

32

7 Gaussian Elimination

The next approach uses Gaussian elimination to calculate the probability distribution of an

environment exactly. This time, the transition matrix M is slightly modulated. In order to

calculate the probability distribution P (x), the method aims to solve the equation system

given by the transition matrix for variable x. As an introduction to this method, we show

how it can be calculated by hand. We then show the application of Gauss elimination,

which has established itself as an algorithmic method.

By repeatedly substituting the equations into each other, we head for a result of the form

x = piti, where i ∈ 1, ..., n and t are sub-expressions or terminals not contained in the

environment variables X . This equation finally represents the distribution. The main

advantage of this method is, that when a solution exists, it is the precise distribution that

can be needed to verify distribution equivalence.

Example 6. From the transition matrix of example 5 we can read off the linear equations.

x1 =
1
2
t1 +

1
2
x2

t1 = t1

x2 =
1
2
t2 +

1
2
x3

t2 = t2

x3 = x1

Note that in this term the constant equations are useless and can be omitted. We begin

with the equation of x1 since it is the entry point. Then we try to substitute the xi until no

xi remains in the equation’s right side of x1. In this example, we first substitute x2 and

then x3. This yields to the equation.

33

7 Gaussian Elimination

x1 =
1
2
t1 +

1
2
x2

x1 =
1
2
t1 +

1
2
(1
2
t2 +

1
2
x3)

x1 =
1
2
t1 +

1
4
t2 +

1
4
x1 | − 1

4
x1

3
4

x1 =
1
2
t1 +

1
4
t2 +

1
4
x1 | · 4

3

x1 =
2
3
t1 +

1
3
t2

The equation then only contains the ti that can not reduce any further. We have just

calculated the resulting distribution accurately with a small amount of effort. We can

compare this distribution with the approximate result of example 5 that uses Markov

chains, and find out, that the deviations are very small. But there are expressions were

substituting expressions in like shown before causeds problems. If the equation contains

multiple variables that are dependent on each other, the variables cannot be eliminated.

In this situation, it can help to first reduce the equations of the problematic variables and

then substitute the results into the equation of the called variable. Sometimes this must be

done at several levels in a hierarchy.

Example 7. let x1 = x2 ⊕ x3, x2 = t1 ⊕ x3, x3 = x2 ⊕ t2 in x1

x1

x2

t1

x3

t2

1
2

1
2

1
2

1
2

1
2

Figure 7.1: Auxiliary graph Gp

x1 =
1
2
x2 +

1
2
x3

x2 =
1
2
t1 +

1
2
x4

x3 =
1
2
x5 +

1
2
t2

x4 = x3

t5 = x2

34

7 Gaussian Elimination

In this example, we encounter a problem. The variables x2 and x3 are cyclic dependent to

each other. This means that substituting one of the variables always produces the other

variable. The elimination of both variables at once is not possible. But with a trick, the

equation can still be solved. The distributions of x2 and x3 can be calculated first and then

inserted into the equation of x1.

x2 =
1
2
t1 +

1
2
x3

x2 =
1
2
t1 +

1
2
(1
2
x2 +

1
2
t2)

x2 =
1
2
t1 +

1
4
x2 +

1
4
t2 | − 1

4
x2

3
4

x2 =
1
2
t1 +

1
4
t2 | · 4

3

x2 =
2
3
t1 +

1
3
t2

x3 =
1
2
x2 +

1
2
t2

x3 =
1
2
(1
2
t1 +

1
2
x2) +

1
2
t2

x3 =
1
4
t1 +

1
4
x3 +

1
2
t2 | − 1

4
x3

3
4

x3 =
1
4
t1 +

1
2
t2 | · 4

3

x3 =
1
3
t1 +

2
3
t2

These transformed equations no longer depend on variables and can therefore be success-

fully used in the definition of x1.

x1 =
1
2
(2
3
t1 +

1
3
t2) +

1
2
(1
3
t1 +

2
3
t2)

x1 =
1
3
t1 +

1
6
t2 +

1
6
t1 +

1
3
t2

x1 =
1
2
t1 +

1
2
t2

In order to raise the process to an algorithmic level, the matrix notation is used again.

The size of the matrix is |X| × |V |. Every row is extracted from a definition within the

environment in for of linear equations. To process all computation steps in one matrix,

every dst(si) is subtracted from xi to bring it to the side of xi. Then the dependencies

occur as negative numbers. The matrix can be split into two separate matrices MX , that is

the n × n coefficient matrix of left variables x⃗ = (x1, ..., xn)
T
and let MT be the n ×m

coefficient matrix of the terminals t⃗ = (t1, ..., tm)
T .

35

7 Gaussian Elimination

MX x⃗ = MT t⃗ (7.1)

Ix⃗ = M ′
T t⃗ (7.2)

The aim is to bring MX in the shape of an identity matrix. This means, that every left

variable is no longer dependent on any other left variables and recursion is removed. When

the linear equation system is solvable, a representation of the environment exists, that has

no recursive dependencies.

Example 8. Let’s assume the expression let x1 = x2 ⊕ x3, x2 = t1 ⊕ x3, x3 = x2 ⊕ t2 in

x1 from previous example again.

1 −1

2
−1

2
0 0

0 1 −1
2

−1
2

0

0 −1
2

1 0 −1
2

Note that the first row of Cx and Ct yields from the assignment of x1 = x2 ⊕ x3 with

the corresponding distribution dst(x1) =
[
1
2
x2,

1
2
x3

]
. By subtraction, x2 and x3 can be

rearranged to the left. This causes the negative signs. Bringing the matrix Cx in form of

the identity matrix with Gaussian elimination results in the following equations:

1 0 0 −1

2
−1

2

0 1 0 −2
3

−1
3

0 0 1 −1
3

−2
3

The complete set of transformation steps applied can be found in the appendix 11. Then,

C can be moved to the other side again, which swaps the sign of all ti again. Now, the

distribution of xi is the i-th row multiplied by v. In this example, the result can be read off

from the first row:

x1 ∼d
1
2
t1 + t2

1
2
=

[
1
2
t1,

1
2
t2
]

36

7 Gaussian Elimination

A major advantage of this method is, that the distributions of all variables are computed at

once. The downsides of this procedure are definitely present in the lack of computability

of the equations and in the high number of computational steps required for large environ-

ments. The latter can be kept small by using garbage-collection to shrink the size of the

environment. Some systems of equations cannot be solved, since the row may vanish.

37

8 Distribution to ΛPNeedR

In the previous section we have shown, that recursive dependencies in the environments

can be removed using equation systems. The solution of the equation system is given by

a set of distributions representing the definitions. It is therefore necessary to transform

the distributions back into an expression. This is straight forward for the lambda-calculus

ΛPNeedR. The transformation into an expression of ΛPNeedR is by far more complicated,

like we will see in this chapter.

8.1 dst to λPNeedR

Theorem 1. For every arbitrary, finite distribution dst(s), there exists an expression t ∈
λPNeedR such that dst(t) ∼D dst(s).

Proof by induction: Let dst(s) := [p1s1, ..., pnsn] be the distribution of expression s, then

the base case is a distribution with a single WEP:

dst(s) := [s] ∼d s

For the induction step, we cut off the first element of the distribution and inserts a prob

operator in between while keeping track of the probabilities.

dst(s) := [p1s1, ..., pnsn]

∼d [p1s1] + [p2s2, ..., pnsn]

∼d
1
p
· [p1s1]⊕p1

1
p−1

· [p2s2, ..., pnsn]

∼d
1
p1

· [p1s1]⊕p1
1

1−p1
· [p2s2, ..., pnsn]

∼d s1 ⊕p1
1

1−p1
· [p2s2, ..., pnsn]

∼d s1 ⊕p1 [
p2

1−p1
s2, ...,

pn
1−p1

sn]

38

8 Distribution to ΛPNeedR

The second sub-expression of the prob-operator is again a distribution on which the

induction applies. Since the size of the distribution shrinks by one element in each iteration,

the number of iteration is finite. □

This proof tells us that for every finite distribution, there must be a non-recursive program

in ΛPNeedR. These programs can be calculated with operational semantics in a very short

time. Due to induction, this also showed, that it suffices to only prove the existence of a

prob-expression for the first inserted ⊕-operator. In the next sections we show that under

some minor restrictions, an expression in ΛPNeed can be found for every finite distribution.

8.2 λPNeedR to λPNeed

The conversion from distributions into λPNeed is much more complex.

Theorem 2. For every arbitrary, finite distribution dst(s) = [(pisi)|i ∈ I] with pi ∈ Q,
there exists an expression t ∈ λPNeed such that dst(t) ∼D dst(s).

The difficulty in proving this is to represent the arbitrary probabilities using only the ⊕
operator, which only supports 50/50 probabilities. We already know, that 2 holds. Then,

we first transform the distribution into an expression of λPNeedR. Since the only difference

of these languages are the prob-operators, it suffices to only show the simulation of ⊕p

in ΛPNeed. It should be said in advance, that most of these programs uses recursion and

therefore the finiteness of the evaluation with operational semantics cannot apply here. To

make the proof understandable, let’s start the topic with an intuitive analogy.

8.2.1 k-fair players in ΛPNeed

Probably everyone knows the decision problem of randomly (and fairly) choosing one

out of two people who is the winner or allowed to start. The coin toss can be used as an

analogy for the ⊕-operator since it also provides two events, head or tail, that can occur

with a 50/50 probability. Head and tail can be assigned to the players. Let pi be the i-th

player. In ΛPNeed this can be modelled as follows:

p1⊕ p2

39

8 Distribution to ΛPNeedR

This expression evaluates randomly to p1 when probl is applied or p2 when probr is applied,

where pi encodes the winning player. The game becomes a bit more complicated when 2n

players take part of the game. Then the coin must be tossed n times, so there are 2n many

different sequences of heads or tails that can be assigned to each player.

Example 9. Forn = 3, 2n = 8 players take part of the game. Then the coin is tossedn times.

Because the coin is tossed n times, there exists 2n sequences {head, tail}n (representing

the prob-sequences introduced in [2]). Each player can uniquely be assigned to a sequence.

After the coin toss, the player with the observed sequence wins. This can be encoded by

the following expression:

((p1⊕ p2)⊕ (p3⊕ p4))⊕ ((p5⊕ p6)⊕ (p7⊕ p8))

But what if the number of players are not powers of two? In this case, we need to get use

of recursive behavior of the ΛPNeed calculus. If n players (not restricted to a power of two)

play, the coin must be tossed at least k times, such that at least n sequences of heads and

tails occurring after k tosses. It holds for n ≥ ⌈log2k⌉. Then the 2n sequences are enough

to allocate one sequence to each player. However, events that have not been allocated

to any player may remain. If such an event is observed after the coin toss, the game is

restarted. Restarting the game ensures that always one player wins and that fairness is

maintained in the limit of repetitions. In order to realize this in a program, we exploit the

recursive behavior of the recursive let environments and define the game of three players

as follows:

Let rec = (p1⊕ p2)⊕ (p3⊕ rec) in rec

Figure 8.1: Expression that evaluates to p1, p2, p3 with equal probability of p = 1
3

Example 10.

The term is plugged into the x simulating a restart of the whole game. A problem arises

in this program. The evaluation of this term is not finite because the self application can

be performed over and over. However, by intuition, the property of restarting multiple

times converges to zero fast. This is a perfect example of probabilistic convergence that

is described in [4]. This example shows us, that we can create probabilistic convergent

40

8 Distribution to ΛPNeedR

programs that can fairly choose items from a set with arbitrary cardinality k ∈ N. The
probability of each event is given by

1
k
and because k is chosen arbitrarily, it follows that

any reciprocal of a natural number can be simulated in a prob-program using ⊕p.

We can also give players different winning probabilities by varying the number of winning

events per player. If an event is included in the set l ∈ N times, the event has a probability

of
l
k
. Since the set has a cardinality of k, l has to be in the range of [0, k].

8.2.2 spt to ΛPNeed

The observation made in section ?? can be used to prove the following theorem.

Theorem 3. For every arbitrary, finite distribution dst = [(pisi)|i ∈ I] with pi ∈ Q, a
distribution equivalent expression in λPNeed can be found.

Proof: Therefore, we show, that the operator ⊕p can be simulated by the operator ⊕p.

Since this is the only difference between the calculi lambdaPNeedR and λPNeed, theorem

2 can be applied after the simulation. We now present an algorithm, that computes an

expression in λPNeed for every arbitrary ⊕p.

Let rec ∈ ΛPNeed. Since p ∈ Q, there is a numerator denoted as pn and a denominator

denoted as pd. Calculate the number d = ⌈log2(pd)⌉ and construct an expression that is

made of nested ⊕-expressions of depth d that is a balanced binary tree in graph notation.

The expressions have n = 2d sub-expressions at leaf position that denoted as [s1, ..., sn].

Then assign a subset of pn many si with s, pd − pn many with t and the remaining n− pd

leaves with the recursive call rec. Since p ∈ [0, 1] is a probability, the relations pn ≤ pd ≤ d

must always hold, and an assignment can always be found. Finally, we check that the prob-

ability distribution of both expressions is identical. The (wsr,⊕) reduction on distributions

yields t′
wsr,⊕−−−→ [ps, (1− p)t]. For s every si is a subexpression of a nested prob-expression.

Applying the fair prob-expression d times

wsr,⊕d−−−−→ si results in an si with probability
1
2d

= 1
n

and a distribution of [1
n
s1, ...,

1
n
sn]. We sum up all si that are labeled equally.

41

8 Distribution to ΛPNeedR

dist(x) ∼d [pn
n
s, pd−pn

n
t, n−pd

n
x] | − n−pd

n
x

⇔ dist(x)− pd
n
s ∼d [pn

n
s, pd−pn

n
t] | · n

pd

⇔ dist(x) ∼d [pn
pd

s, pd−pn
pd

t]

⇔ dist(x) ∼d [p s, (1− p) t]

⇔ dist(x) ∼d s⊕p t

This completes the proof of theorem 3. □

Example 11.

s⊕ 3
5
t ⇒ let rec = (((s⊕ s)⊕ (s⊕ t))⊕ ((t⊕ rec)⊕ (rec⊕ rec))) in rec

By the use of distributive and idempotent transformation rules from [2] this expression

could be reduced. On the resulting expression, optimizations may be applicable using

idempotence or rearranging the leaves. Given an example for a distribution equivalent

minimal expression, optimization is not discussed further in this work.

s⊕ 3
5
t ⇒ let rec = ((s⊕ (s⊕ x))⊕ (t⊕ x)) in rec

With the methods provided so far, one can prevent for let-expression to fall into infinite

reduction sequences caused by recursion. The definitions of an environment can be seen

as linear equations, can be modified using linear algebra and finally can be reassembled as

expressions of the calculi ΛPNeed and ΛPneedR.

42

9 Interpreter

It was of natural choice to test the methods investigated during the previous chapters

by implementing a Haskell interpreter. Parts of the interpreter were taken or inspired

from the interpreter used in [4] but adjusted to the context of this work. The code

was developed with the Glasgow Haskell Compiler (GHCi), version 8.8.4 that was in-

stalled on a Linux machine (Linux Debian). More information about the compiler can

be found under https://www.haskell.org/ghc/. The interpreter can be found online at

https://gitlab.com/functional-programming2/learn-gitlab/-/tree/master. To start the inter-

preter via GHCi, download the project folder and move into the folder where the "main.hs"

, "Distribution.hs" and "Matrix.hs" are located and run the GHCi. Then, the "main.hs" file

can be loaded using the following command:

>> :l main.hs

Now, the interpreter is ready to use.

9.1 Functionalities

The functionality is extended such that recursive expressions can be computed as intro-

duced. Lambda expressions of the calculus λPNeedR can be defined, common properties

can be queried, standard reduction rules can be invoked. The weighted standard reduction

is implemented, as well as the evaluation strategies using Markov chains and Gauss elimi-

nation. This functionality comes along with a set of functions that work on distributions

and matrices.

43

https://www.haskell.org/ghc/
https://gitlab.com/functional-programming2/probabilistic-call-by-need-lambda-calculus

9 Interpreter

9.1.1 The Calculus

The type of expressions is defined like introduced in chapter 2. The implementation is

similar to the interpreter of [4] and only has slightly changes for simplification. Variables

are of a fixed type String. The operator defined is the ⊕p operator provided with the bias p.

Thus, the ⊕ operator can be represented easily by fixing p = 0.5. The other direction is

not as trivial, as shown in section 8.

data Expr = Var String

| Lam String Expr

| App Expr Expr

| Prob Rational Expr Expr

| Let Env Expr

deriving Eq

type Env = [Definition]

data Definition = Def String Expr deriving Eq

By deriving equality for expressions, they can be compared by definition. Environments

are defined as lists that contain definitions. Definitions contains a left variable that is a

string and an expression. The instance for Show is implemented to provide a pretty string

representation when the expressions are printed to the console. This includes the usage of

a UTF-8 charset for printing out the special characters, like "λ" and "⊕." The bias p of the

prob-operator is automatically hidden, if the probability is
1
2
. In case of 0 or 1, the right or

the left side is omitted respectively.

Example 12. let x1 = t1 ⊕ x2, x2 = t2 ⊕ x1 in x1

This expression from example 3 can be typed into the interpreter as follows.

Let [Def "x_1" (Prob 0.5 (Var "t1") (Var "t2)), Def "x2" (Prob 0.5 (Var "t2") (Var "x1))]

(Var "x1")

Pressing enter yields in the following output:

(let x1 = (t1 ⊕ t2), x2 = (t2 ⊕ x1) in x1)

44

9 Interpreter

9.1.2 Variables

The functions fv and bv compute free and bound variables implementing the rules of 2.3.

fv :: Expr -> [String]

fv (Var x) = [x]

fv (Lam x s) = delete x (fv s)

fv (App s t) = nub ((fv s) ++ (fv t))

fv (Let env s) = nub ((fv s) ++ (envFv env)) \\ (envBv env)

fv (Prob _ s t) = nub ((fv s) ++ (fv t))

bv :: Expr -> [String]

bv (Var x) = []

bv (Lam x s) = nub ([x] ++ (bv s))

bv (App s t) = nub ((bv s) ++ (bv t))

bv (Let env s) = nub ((bv s) ++ (envBv env))

bv (Prob _ s t) = nub ((bv s) ++ (bv t))

envFv :: Env -> [String]

envFv [] = []

envFv env@((Def x s) : xs) = (nub ((fv s) ++ (envFv xs))) \\ envBv env

envBv :: Env -> [String]

envBv [] = []

envBv ((Def x s) : xs) = nub ([x] ++ (bv s) ++ (envBv xs))

The variables are stored in lists. An implementation using the data type Setwas considered,

but decided against. Using list simplifies the code because there is no need for conversion.

However, this implementation is not as performant, especially due to the use of the function

nub that deletes duplicates but has a complexity of O(n2).

The function lv can be invoked to get the left variables of an environment.

lv :: Env -> Set.Set String

lv [] = Set.empty

lv ((Def x s) : xs) = Set.insert x (lv xs)

Whenever a reduction is performed, care must be taken to the names of variables. The

standard reduction rules (sr,cp-in) and (sr,cp-e) may copy abstractions into a redex, where

the variable names can still occur. Thus, free variables can be captured erroneously. To

45

9 Interpreter

prevent this, the function rename assigns every bound variable a unique variable name.

For more information, see [4].

9.1.3 Distributions

The type of weighted expression pairs WEP and distributions Dst are defined to simplify

the type annotations.

type WEP = (Rational , Expr)

type Dst = [WEP]

Since the probabilism requires the usage of distributions, some helpful functions are added.

The function dst takes an expression and decomposes it recursively as far as possible

using the set of rules 4.3.

dst :: Expr -> Dst

dst (Var x) = [(1,(Var x))]

dst (Lam x s) = [(1,(Lam x s))]

dst (App s t) = dstAppDst (dst s) (dst t)

dst (Prob p s t) = dstAddDst (skalarMulDst p (dst s)) (skalarMulDst (1-p) (dst t))

dst (Let e s) = [(1,(Let e s))]

If an expression only contains prob-expressions and variables, the environment recursion

vanishes always.

Many other functions have been implemented that are not listed here for reasons of space.

To group equal expressions within the distribution, dstNub rebuilds the distribution by

successive add a WEP (p, s) while observing, whether a WEP (q, s) is contained. If yes, the

probabilities are added such that (p+ q, s) is in the distribution. Alternatively, the WEP is

added as a new element.

dstNub :: Dst -> Dst

dstNub [] = []

dstNub (wep@(p,s) : xs)

| dstIsElem xs s = dstNub (dstAddWep xs wep)

| otherwise = wep : (dstNub xs)

46

9 Interpreter

The function dstClean removes all the WEPs that are included in the distribution but have

a probability of zero. This function is invoked from the function rewriteGauss, where the

distributions are reassembled from the matrix and contain unnecessary entries.

dstClean :: [(Rational ,Expr)] -> [(Rational ,Expr)]

dstClean [] = []

dstClean (wep@(p,s) : xs) = if (p == 0 || p < 0) then (dstClean xs) else wep : (dstClean

xs)

rewriteMarkov uses a similar function cleanRound. It also removes weighted terms that

fall below a certain threshold. The threshold is taken as an additional parameter.

9.1.4 Reduction

The function srReduce implements the standard reduction rules 2.1. The implementation is

taken from [4] and adjusted for our case. It takes an expression and tries to apply one of the

standard reduction rules of [2] while traversing the expressions in the order of reduction

contexts. If no reduction is applicable, a Nothing is returned. If a prob-reduction is feasible,

it returns a Branch s’ t’, where s’ and t’ are the reduced expressions respectively. For

any other reduction, a Just s’ with the reduced expression s’ is returned.

stReduce :: Expr -> Maybe (Result Expr)

The prob-operator can not be implemented using pure functional Haskell, since probabilism

is required. But it can be simulated by performing a weighted reduction and then sample

from the distribution.

9.1.5 Evaluation

The function evaluate is the heart of the interpreter. On the one hand, it lifts the standard

reduction to a reduction on distributions, on the other hand, the functions rewriteGauss,

rename and garbageCollection are applied after every reduction step. The different

strategies of evaluation are implemented. The function evaluateWSR takes an expression

47

9 Interpreter

and tries to compute the probability distribution by only applying weighted standard

reduction steps.

dstGauss :: Dst -> [String] -> Dst

dstGauss [] _ = []

dstGauss ((p,s) : xs) vars =

let s2 = rewriteGauss s

(s’, vars ’) = rename s2 vars

in case srReduce s’ of

Nothing -> [(p, garbageCollection s’)]

Just (Next s’’) -> evaluate [(p, (garbageCollection s’’))] vars ’

Just (Branch q el er)

| p >= 0 && p <= 1 ->

let pL = q*p

pR = (1-q)*p

in (evaluate [(pL, (garbageCollection el))] vars ’) ++

(evaluate [(pR, (garbageCollection er))] vars ’)

| otherwise -> error "probabilities must be between 0 and 1"

evaluateGauss e = dstGauss [(1,e)] fresh

evaluateMarkov e n = dstMarkov [(1,e)] n

fresh = ["x_" ++ show i | i <- [1..]]

The second parameter is an infinite list of fresh variable names, like shown in the last row.

Note that these must be distinct to the variable in the reduced expression to avoid name

clashes.

To ensure that no further naming conflicts may occur, the variable names used by the

function rename must be handed to the function. This can be done by infinite lists like

fresh that generates an infinite list of variable names. Make sure, that they are distinct to

the set of all variables within the expression.

9.1.6 sample

The non-deterministically function sample can be used to extract an expression from an

distribution taking the respective probabilities into account.

48

9 Interpreter

sample :: Dst -> IO Expr

sample d = do

r <- randomIO :: IO Double

return (helper d (toRational r))

where

helper :: Dst -> Rational -> Expr

helper [] f = Bot

helper ((p,s) : xs) f

| f < p = s

| otherwise = (helper xs ((toRational f)-p))

This function creates a random number between 0 and 1. The helper function divides

the space into intervals, such that every entry of the distribution belongs to a range

[
∑i−1

k=1 pk,
∑i

k=1 pk]. The expression of the interval, in which the random number falls, is

returned. A minor issue is, that the random generator creates double values and rounds

them to rationals. The probabilities can be slightly off from what expected. Since it is

a random experiment anyway and the errors are negligible, the effects should not be

noticeable. Applying this to a distribution simulates the evaluation of the operational

semantics.

9.1.7 Markov Chains

The function evaluateMarkov takes the expression and a number n of iterations. This tries

to compute the probability distribution using Markov chains. It uses standard reduction

rules. Whenever a let-expression is in the scope of the reduction context, the environment is

transformed into a transition matrix. It’s power to the n is computed. A vector representing

the initial state is created for each variable, which is populated with zeros and a 1 at the

index of the variable. Finally, by the multiplications of the initial vectors with the matrix

are computed. Afterward, the distributions of the potentials can be extracted from the

resulting matrix. Using the conversion technique of section 2, the distributions can be

transformed back into expressions. This hopefully unravels the recursion. Finally, the

weighted standard reduction is applied.

rewriteMarkov :: Env -> Int -> Env

rewriteMarkov env n =

let m = Mat.toList (markov env n)

v = getNodeVec env

49

9 Interpreter

dsts = take (length env) m

dsts2 = map (\r -> zip r v) dsts

clean = map Dst.clean dsts2

expr = map dstToExpr clean

in helper expr v

where

helper :: [Expr] -> [Expr] -> Env

helper [] _ = []

helper _ [] = []

helper (s : ss) ((Var x) : xs) = (Def x s) : helper ss xs

Often, the imprecision of the technique does not vanish the recursive variables completely.

They are maintained in the distributions, and the recursion is still present. To bypass this

issue, one can exploit the fast convergence of the probabilities. If a probability falls below

a certain threshold, it simply can round to zero, which removes the variable fully. This is

exactly what the function cleanRound does. The threshold is taken as a parameter. When

the evaluation does not terminate, the threshold can be increased, causing more imprecise

results or the power n can be increased, Which requires more computational power.

cleanRound :: (Num a, Ord a) => a -> Dst a b -> Dst a b

cleanRound _ [] = []

cleanRound d ((p,s) : xs)

| p < d = cleanRound d xs

| otherwise = (p,s) : cleanRound d xs

9.1.8 Transition Matrix

The transitionmatrix of an environment can compute by the function getTransitionMatrix.

It requests the order of nodes in the matrix, initializes an identity matrix requests the

dependencies and inserts them into the matrix.

getTransitionMatrix :: Env -> Mat.Matrix Rational

getTransitionMatrix env =

let v = getNodeVec env

n = length v

i = Mat.matrix n n Mat.identity

edges = envGetEdges env v

in (setEdges edges i)

50

9 Interpreter

where

envGetEdges :: Env -> [Expr] -> [(Int , Int , Rational)]

envGetEdges [] v = []

envGetEdges (d : xs) v = (defGetEdges d v) ++ envGetEdges xs v

The vector v which stores the order of node-expression in the matrix can be requested

using the function getNodeVec.

getNodeVec :: Env -> [Expr]

getNodeVec [] = []

getNodeVec ((Def x s) : xs) = nub ([(Var x)] ++ (getNodeVec xs) ++ (getNodes s))

9.1.9 Gauss Elimination

The function envRewriteGauss works similar to the function envRewriteMarkov. The

distribution is computed using weighted standard reduction until a let-expression comes

into the scope of a reduction context. The environment is transformed into a set of

equations that can be solved with Gaussian elimination. Now, the result is still in the form

of distributions belonging to the potentials. Using the conversion of 2 again writes them

back to the environment. Finally, the weighted standard reduction is applied.

envRewriteGauss :: Env -> Env

envRewriteGauss env =

let v = getNodeVec env

r = length env

c = length v

dm = getDependentMatrix env

iden = Mat.toIdentity dm

inv@(Mat.Mat r1 c1 m) = Mat.mapAll (*(-1)) iden

dsts1@(Mat.Mat r2 c2 m2) = Mat.addMatrix inv (Mat.matrix r1 c1 Mat.identity)

dsts2 = map (\r2 -> zip r2 v) m2

clean = map Dst.clean dsts2

expr = map dstToExpr clean

in helper expr v

where

helper :: [Expr] -> [Expr] -> Env

helper [] _ = []

helper _ [] = []

helper (s : ss) ((Var x) : xs) = (Def x s) : helper ss xs

51

9 Interpreter

9.1.10 dependent Matrix

getDependentMatrix is a function that takes an environment and computes the dependent

matrix. It requests the vector v of node-expressions

getDependentMatrix :: Env -> Mat.Matrix Rational

getDependentMatrix env =

let v = getNodeVec env

r = length env

c = length v

i = Mat.matrix r c Mat.identity

edges = getEdges env v

in (setEdgesGauss edges i)

where

getEdges :: Env -> [Expr] -> [(Int , Int , Rational)]

getEdges [] _ = []

getEdges (d : xs) v = (defGetEdges d v) ++ getEdges xs v

First, the vector v of node-expressions is computed with the call of the function getNodeVec.

A n×m identity matrix is defined, where n is the number of definitions i.e. the number of

left-variables in the environment, andm, which is the cardinality of v. Last but not least,

the edges, represented by the dependencies, are calculated and inserted into the matrix.

The linear equations of the definitions are given row-wise in the final matrix.

The function getNodeVec extracts the list of node-expressions from the environment. It

usess getNodes, that returns a list of leaf-nodes of a P-Context.

getNodes :: Expr -> [Expr]

getNodes e@(Prob p s t) = (getNodes s) ++ (getNodes t)

getNodes s = [s]

getNodeVec :: Env -> [Expr]

getNodeVec [] = []

getNodeVec ((Def x s) : xs) = nub ([(Var x)] ++ (getNodeVec xs) ++ (getNodes s))

9.1.11 λPNeedR to λPNeed

The function probPToProb takes an expression s⊕p t of calculus λPNeedR and creates a

distribution equivalent expression s⊕ t in λPNeed. The function creates a p-context that

52

9 Interpreter

represents a balanced tree of nested prob-expressions. Let dp be the denominator of p.

Then the tree must have at least dp many leafs, i.e. the next higher power of two. Then, by

the number of assigned leaves with s, t and recursive calls, the number p can be simulated.

probPToProb :: Rational -> Expr -> Expr -> Expr

probPToProb 0 _ e2 = e2

probPToProb 1 e1 _ = e1

probPToProb p e1 e2

| p < 0 || p > 1 = error "probPToProb: p is not in range [0,1)"

| otherwise = fairExprs ((replicate nu e1)

++ (replicate (de - nu) e2)

++ (replicate (n - de) (Var "rec")))

where nu = fromIntegral (numerator p)

de = fromIntegral (denominator p)

n = ((ceiling . logBase 2.0 . fromIntegral) de)

fairExprs :: [Expr] -> Expr

fairExprs [] = error "kFair 0 is undefined"

fairExprs exprs = exprProbTree (exprs ++ (replicate d (Var "rec")))

where n = length exprs

k = ((ceiling . logBase 2.0 . fromIntegral) n)

d = (2^k) - n

The tree could be optimized in the count of prob expressions, since the resulting expressions

often get extremely long, this function should be seen as an theoretically proof, but not as

a beneficial tool.

The function "distToProbR" that converts distribution into an expression of calculus

ΛPNeedR looks surprisingly simple.

distToProbR :: [(Rational ,Expr)] -> Expr

distToProbR [(p,s)] = s

distToProbR ((p,s) : xs) = Prob p s (distToProbR (distMult xs (1/(1-p))))

9.1.12 Matrix Operations

In the functions related to Markov chains and Gauss elimination, matrix operations are

used that are implemented in a separate file "Matrix.hs". The required matrix operations

are implemented such as matrix multiplication, a generator for setting up identity matri-

53

9 Interpreter

ces, higher order functions that apply to single rows, etc. We’d like to show the matrix

multiplication and a function that calculates the power of a function, since they are used in

the solving strategy using Markov chains. The multiply is implemented using the function

zipWith.

multiply :: Num a => Matrix a -> Matrix a -> Matrix a

multiply mat1@(Mat r1 c1 m1) mat2@(Mat r2 c2 m2) =

Mat r1 c2 [[

sum (zipWith (*) (getRow i mat1) (getCol j mat2))

| j <- [0..(c2-1)]] | i <- [0..(r1-1)]]

In order to calculate the power of a matrix, the function power is implemented as a divide

and conquer algorithm. The exponent n is split into half if it is even. The two resulting

smaller problems are equivalent and can be computed at once. A logarithmic speedup can

be observed in contrast to the naive strategy of multiplying the matrix n times. Through

that, the function is still performant for large n.

power :: Num a => Matrix a -> Int -> Matrix a

power m 1 = m

power m n

| n < 1 = error "power: The power of the matrix must be grater than 0"

| n ‘mod ‘ 2 == 0 = multiply (power m (n ‘div ‘ 2)) (power m (n ‘div ‘ 2))

| otherwise = multiply m (power m (n-1))

9.2 Testing Expressions

We tested the implementation with some of the example expressions from the previous

sections. The behavior is as expected. Some of the recursive expressions will not terminate

when evaluatingwith evaluate, but when using evaluateGauss. The recursive expression

fair3 is a simple recursive example that can be used to test the behavior of all three

evaluation strategies.

>> fair3 = Let [Def "rec"

(Prob 0.5

54

9 Interpreter

(Prob 0.5

(Var "p1")

(Var "p2")

)

(Prob 0.5

(Var "p3")

(Var "rec")

)

)

] (Var "rec")

Pressing enter binds the expression to the name fair3. The expression is remembered and

can be invoked by calling its short name. First, the common evaluation is applied:

>> evaluate fair3

[(1 % 4,(let x_3 = p1 in x_3)),

(1 % 4,(let x_3 = p2 in x_3)),

(1 % 4,(let x_3 = p3 in x_3))

*** Exception: stack overflow

The evaluation crashes when the recursive variable comes in scope of the reduction. The

recursion does not end and the infinite sum of probabilities completely fills the storage

until the exception is thrown. Running the evaluation on the interpreter of [4] will also fail

with returning an error message, that the evaluation has stopped after 100 reduction steps.

>> evaluate fair3

[(341 % 1024,(let x_3 = p1 in x_3)),

(341 % 1024,(let x_3 = p2 in x_3)),

(171 % 512,(let x_3 = p3 in x_3))

*** Exception: stack overflow

In contrast, the evaluation using Markov terminates. Even with the fifth power, the

probabilities do not deviate even by a thousandth (using Dst.toFloat, the distribution is

converted to float values for better readability).

>> evaluateMarkov fair3 5 (1/1000))

[(0.3330078125 ,(let x_2 = p1 in x_2)),

(0.3330078125 ,(let x_3 = p2 in x_3)),

(0.333984375 ,(let x_3 = p3 in x_3))]

55

9 Interpreter

Then we can apply that expression to functions like evaluateGauss. Pressing enter again

will output the accurate distribution as shown.

>> evaluateGauss fair3

[(1 % 3,(let x_2 = p1 in x_2)),

(1 % 3,(let x_3 = p2 in x_3)),

(1 % 3,(let x_3 = p3 in x_3))]

All the distributions look confusing because of the renamed variables, and the environments

are preserved even though garbage collection is applied. This is since the definitions might

be needed in future reduction. As explained in section 8.2.1, the result is a distribution that

contains three weighted expression pairs with probability p = 1
3
each. Taking a closer look

into the function evaluate that manages the steps of evaluation reveals, that the function

rewriteGauss is applied.

>> rewriteGauss fair3

(let rec = (p1 ⊕1/3 (p2 ⊕ p3)) in rec)

The dependent matrix can be requested as well. This one consists of a single row.

>> getDependentMatrix (getEnv fair3)

3 % 4 (-1) % 4 (-1) % 4 (-1) % 4

An interesting observation can bemade by sequentially apply the functions rewriteMarkov

without rounding followed by the rewriteGauss. For all arbitrary chosen n being the

power of the transition matrix in the Markov chain, the result is identical. It turns out that

the expressions of the rewriteMarkov must be mutual distribution equivalent.

9.3 Discussion

There are still a lot of expression, the interpreter still cannot compute, because the evalua-

tion will be trapped in an infinite loop. But how can we tell if an expression is computable

using the procedures we have investigated? The methods using Markov chains and Gauss

56

9 Interpreter

require the computation of a dependent graph. Therefore, linear equations are extracted

from the definitions using the rules 4.3. The dependencies that can be noticed are those,

that occur as single variables in the distribution of the Definitions. But applications,

abstractions and let-expressions within the distribution can contain other left variables

(dependencies) as well. Those are not recognized and the potential of eliminating recursion

is reduced. Since the set of rules is certainly not exhaustive. The question arises whether

other rules exist. By adding new rules, the number of computable distributions could

increase significantly. To adjust the implementation, little effort is required, because only

the dst function needs to be adjusted.

57

10 Conclusion

We have dealt with probability distributions and their contextually equivalent ΛPNeedR

expressions. It could be shown that for some distributions a non-recursive expression

in ΛPNeedR can be constructed, but the version in ΛPNeed requires recursion. Evaluating

both expressions with the operational semantics introduced by [2] will fail for the ΛPNeed

expression, but may terminate for the ΛPNeedR expression. In conclusion, the evaluation

strategy of [2] does not suffice the requirements needed to decide equality of expressions by

observing their distributions. Hence, we tried to fix the issue by analyzing environmental

variables that are defined using recursive dependencies. A linear equation system can

be extracted from the environments. We have investigated two algorithms to solve the

equations. The former uses Markov chains and outputs an approximated solution, the

latter solves the equation system accurately by using Gauss elimination. Afterwards the

solution can be transformed back into an expression or may provide the desired distribution.

Therefore, we investigated algorithms for transforming distributions back to expressions of

λPNeed and λPNeed. It has been proven, that the transformation is always be commutable

when the probabilities of the distribution are rational numbers. Because the computation

of distributions is undecidable in general, a compromise was made and simplified rules

for decomposing distributions were given. These rewriting rules does not recognize

all dependencies. Improvements can certainly be made here in order to exploit the full

potential. For this reason, the algorithms do not cover all expressions that are solvable

in theory, leaving many expressions for which our analyses fail. Finally, an interpreter

was developed that implements the researched methods. It’s nice to mention that the

observations have lived up to expectations, and some of the recursive let-expressions can

now be computed automatically.

58

11 Appendix

59

Acronyms

BNF Backus-Naur-Form

DVC distinct variable convention

WEP weighted expression pair

WHNF weak head noormal form

60

Acronyms

Transformations steps of example 8

I

II

III

1 −1

2
−1

2
0 0

0 1 −1
2

−1
2

0

0 −1
2

1 0 1
2

+1

2
II

I

II

III

1 −1

2
−1

2
0 0

0 1 −1
2

−1
2

0

0 0 3
4

−1
4

−1
2

·4
3

I

II

III

1 −1

2
−1

2
0 0

0 1 −1
2

−1
2

0

0 0 1 −1
3

−2
3

+1

2
III

+1
2
III

I

II

III

1 −1

2
0 −1

6
−1

3

0 1 0 −2
3

−1
3

0 0 1 −1
3

−2
3

+1

2
II

I

II

III

1 0 0 −1

2
−1

2

0 1 0 −2
3

−1
3

0 0 1 −1
3

−2
3

+1

2
III

+1
2
III

Operations that can be performed to bring left square matrix into the shape of an identity

matrix.

61

Bibliography

1. LAGO, U. D.; ZORZI, M.: Probabilistic Operational Semantics for the Lambda Calculus.

CoRR. 2011, vol. abs/1104.0195. Available from arXiv: 1104.0195.

2. SABEL, D. et al.: A Probabilistic Call-by-Need Lambda-Calculus – Extended Version.

2022.

3. SABEL, D.; SCHMIDT-SCHAUSS, M.: Program Equivalence in a Typed Probabilistic
Call-by-Need Functional Language [EasyChair Preprint no. 8385]. EasyChair, 2022.

4. MAIO, L.: The Probabilistic Lambda Calculus with Call-by-Need-Evaluation. 2021,

pp. 1–12.

5. RAU, C. et al.: Correctness of Program Transformations as a Termination Problem. In:

2012, pp. 462–476. isbn 978-3-642-31364-6. Available from doi: 10.1007/978-3-642-

31365-3_36.

6. KENNAWAY, J. et al.: Infinitary lambda calculus. Theoretical Computer Science. 1997,
vol. 175, no. 1, pp. 93–125. issn 0304-3975. Available from doi: https://doi.org/10.1016/

S0304-3975(96)00171-5.

7. PLOTKIN, G.: LCF considered as a programming language. Theoretical Computer
Science. 1977, vol. 5, no. 3, pp. 223–255. issn 0304-3975. Available from doi: https:

//doi.org/10.1016/0304-3975(77)90044-5.

8. FAGGIAN, C.; ROCCA, S. R. D.: Lambda Calculus and Probabilistic Computation. CoRR.
2019, vol. abs/1901.02853. Available from arXiv: 1901.02853.

9. BARENDREGT, H.; KLOP, J.: Applications of infinitary lambda calculus. Information
and Computation. 2009, vol. 207, no. 5, pp. 559–582. issn 0890-5401. Available from doi:

10.1016/j.ic.2008.09.003.

62

https://arxiv.org/abs/1104.0195
https://doi.org/10.1007/978-3-642-31365-3_36
https://doi.org/10.1007/978-3-642-31365-3_36
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00171-5
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00171-5
https://doi.org/https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/https://doi.org/10.1016/0304-3975(77)90044-5
https://arxiv.org/abs/1901.02853
https://doi.org/10.1016/j.ic.2008.09.003

	Introduction
	Related Work
	Motivation
	Overview

	Program Calculus PNeedR
	Expressions E
	Context C
	Answers A
	Reduction Relation []sr
	Variables
	Weighted reduction
	Program Calculus PNeed

	Equivalence
	Contextual Equivalence
	Expected Convergence

	Distributions
	Distribution Equivalence
	Reduction on Distributions
	Distributions as Linear Equations
	Distribution Decomposition

	Recursion
	
	Black Hole
	Y Combinator
	Direct recursion
	Dependent Graph
	Indirect Recursion

	Markov Chain
	Transition Matrix

	Gaussian Elimination
	Distribution to PNeedR
	dst to PNeedR
	PNeedR to PNeed

	Interpreter
	Functionalities
	Testing Expressions
	Discussion

	Conclusion
	Appendix
	Bibliography

