
HERMIT: An Equational Reasoning Model to
Implementation Rewrite System for Haskell

Andy Gill

HERMIT is joint work with
Andrew Farmer, Nick Frisby, Ed Komp, Neil Sculthorpe,
Robert Blair, Jan Bracker, Patrick Flor, Adam Howell,

Ryan Scott, Mike Stees, Brad Torrence and Michael Tabone

Functional Programming Group
Information and Telecommunication Technology Center

University of Kansas
andygill@ku.edu

13th July 2014

1 / 49

Compilers Should not be Black Boxes

We improve spam filters by scripting.

Dear Nobody,

-___-=__----_-

…..

 $&

Can we fix our compiler using scripting?

2 / 49

Remote Shell for our Haskell compiler?

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

This idiom has many instantiations: faster code; using a different
interface; space usage; semi-formal verification.

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra. They all operate on Haskell source code.

We take a different approach, and provide commands to
transforming GHC Core, GHC’s intermediate language.

3 / 49

Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

fib :: Int → Int
fib n = if n< 2

then 1
else fib (n− 1) + fib (n− 2)

fib :: Int → Int
fib n = if n< 2 then 1

else (if (n− 1)< 2 then 1
else fib (n− 1− 1) + fib (n− 1− 2)

)
+
(if (n− 2)< 2 then 1

else fib (n− 2− 1) + fib (n− 2− 2)
)

4 / 49

Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

fib :: Int → Int
fib n = if n< 2

then 1
else fib (n− 1) + fib (n− 2)

fib :: Int → Int
fib n = if n< 2 then 1

else (if (n− 1)< 2 then 1
else fib (n− 1− 1) + fib (n− 1− 2)

)
+
(if (n− 2)< 2 then 1

else fib (n− 2− 1) + fib (n− 2− 2)
)

5 / 49

First Demo

resume . resume the compile

binding-of ’main . goto the main definition

binding-of ’fib . goto the fib definition

remember "myfib" . remember a definition

show-remembered show what has been remembered

any-call (unfold-remembered ”myfib”) try unfold “myfib”

bash . bash a syntax tree with simple rewrites

top . go back to the top of the syntax tree

load-and-run "Fib.hss" load and run a script

6 / 49

First Demo
resume . resume the compile

binding-of ’main . goto the main definition

binding-of ’fib . goto the fib definition

remember "myfib" . remember a definition

show-remembered show what has been remembered

any-call (unfold-remembered ”myfib”) try unfold “myfib”

bash . bash a syntax tree with simple rewrites

top . go back to the top of the syntax tree

load-and-run "Fib.hss" load and run a script

7 / 49

What did we do?

HERMIT requires a recent ghc (I am using GHC 7.8.2)

1 cabal update

2 cabal install hermit

3 hermit Main.hs

The hermit command just invokes GHC with some default flags:

% hermit Main.hs

ghc Main.hs -fforce-recomp -O2 -dcore-lint

-fexpose-all-unfoldings

-fsimple-list-literals -fplugin=HERMIT

-fplugin-opt=HERMIT:main:Main:

8 / 49

HERMIT Use Cases

We want to explore the use of the worker/wrapper transformation for
program refinement

We need mechanization to be able to scale the idea to larger examples
Are working on large case study: Low Density Parity Checker (LDPC)
Transforming math equations into Kansas Lava programs

HERMIT is for library writers

Authors show equivalence between clear (specification) code, and
efficient (exported) code.

HERMIT is a vehicle for prototyping GHC passes

Optimization: Stream Fusion
Optimization: SYB
Staging: Translating Core into CCC combinators. (Elliott, et. al.)

Hope to use for teaching program refinement and optimization

(Your project goes here)

9 / 49

Highest Level Architecture

We draw inspiration from UNIX and operating systems.

Three levels

Shell Level . (UNIX Shell style commands)

Rewrite Level (UNIX man(2) system commands)

Stratego-style library for rewrites (DSL for rewrites)

10 / 49

Shell Level

UNIX Shell style commands

Dynamically typed, variable arguments

Help (man) for each command

Control flow commands (’;’, retry, etc.)

11 / 49

Rewrite Level

UNIX man(2) system commands

Haskell functions, strongly typed

Think type :: CoreExpr → M CoreExpr

Higher-order functions for tunneling into expressions

Many function tunnel into GHC (example: substExpr)

Allow, all GHC “RULES” are directly invokable.

12 / 49

Stratego style library for rewrites

Haskell DSL call KURE

Basic idea: rewrites can succeed or fail

Higher-order combinators for search, catching fail, retry

Both levels reflect the Stratego API

13 / 49

Lifting the Lid on the HERMIT Project

Haskell
Compiler

HERMIT
Stack

Glasgow
Haskell

Compiler

Haskell
Module

Haskell
Binary

HERMIT
Kernel

KURE

GHC Core
Support

Rewrite
Primitives

Command
Support

HERMIT

RESTful
Server

HERMIT
Applications

GHC
Plugin

API

Android
HERMIT

Application

Interactive
Users

Scotty

Warp

Command
Line + Tab
Complete

HERMIT
Script

Reader

HERMIT
Shell

HERMIT
Scripts

Plugin
DSL

Custom
GHC

Plugins

14 / 49

HERMIT Commands

Core-specific rewrites, e.g.
beta-reduce
eta-expand ’x
case-split ’x
inline

Strategic traversal combinators (from KURE), e.g.
any-td r
repeat r
innermost r

Navigation, e.g.
up, down, left, right, top
binding-of ’foo
app-fun, app-arg, let-body, . . .

Version control, e.g.
log
back
step
save “myscript.hss”

15 / 49

The Worker/Wrapper Transformation

16 / 49

Creating Worker and Wrapper for last

last :: [a] -> a

last =

\ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs

last_work :: a -> [a] -> a

last_work = \ x xs ->

(

\ v -> case v of

[] -> error "last: []"

(x:xs) -> case xs of

[] -> x

(_:_) -> last xs

) (x:xs)

17 / 49

Creating Worker and Wrapper for last

last :: [a] -> a

last =

\ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs

last_work :: a -> [a] -> a

last_work = \ x xs ->

(\ v -> case v of

[] -> error "last: []"

(x:xs) -> case xs of

[] -> x

(_:_) -> last xs) (x:xs)

Create the worker out of the body and an invented coercion
18 / 49

Creating Worker and Wrapper for last

last :: [a] -> a

last = \ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs

last_work :: a -> [a] -> a

last_work = \ x xs ->

(\ v -> case v of

[] -> error "last: []"

(x:xs) -> case xs of

[] -> x

(_:_) -> last xs) (x:xs)

Invent the wrapper which calls the worker
19 / 49

Creating Worker and Wrapper for last

last :: [a] -> a

last = \ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs

last_work :: a -> [a] -> a

last_work = \ x xs ->

(\ v -> case v of

[] -> error "last: []"

(x:xs) -> case xs of

[] -> x

(_:_) -> last xs) (x:xs)

These functions are mutually recursive
20 / 49

Inline Wrapper

last :: [a] -> a

last = \ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs

last_work :: a -> [a] -> a

last_work = \ x xs ->

(\ v -> case v of

[] -> error "last: []"

(x:xs) -> case xs of

[] -> x

(_:_) -> last xs) (x:xs)

We now inline last inside last work
21 / 49

Inline Wrapper

last :: [a] -> a

last = \ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs

last_work :: a -> [a] -> a

last_work = \ x xs ->

(\ v -> case v of

[] -> error "last: []"

(x:xs) -> case xs of

[] -> x

(_:_) ->

(\ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs) xs) (x:xs)

last work is now trivially recursive.
22 / 49

Simplify work

last :: [a] -> a

last = \ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs

last_work :: a -> [a] -> a

last_work = \ x xs ->

(\ v -> case v of

[] -> error "last: []"

(x:xs) -> case xs of

[] -> x

(_:_) ->

(\ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs) xs) (x:xs)

We now simplify the worker
23 / 49

Simplify work

last :: [a] -> a

last = \ v -> case v of

[] -> error "last: []"

(x:xs) -> last_work x xs

last_work :: a -> [a] -> a

last_work = \ x xs ->

case xs of

[] -> x

(x:xs) -> last_work x xs

Reaching our efficient implementation
24 / 49

Second Demo

flatten-module . create one big rec group

fix-intro . introduce a fix

split-1-beta last [| wrap |] [| unwrap |] apply worker/wrapper

unfold [’g,’wrap,’unwrap] . unfold a set of bindings

prove-lemma last-assumption . open a proof

lhs (...) . Apply a rewrite to the left-hand-side of a proof

end-proof . check for α-equivalence

25 / 49

Second Demo
flatten-module . create one big rec group

fix-intro . introduce a fix

split-1-beta last [| wrap |] [| unwrap |] apply worker/wrapper

unfold [’g,’wrap,’unwrap] . unfold a set of bindings

prove-lemma last-assumption . open a proof

lhs (...) . Apply a rewrite to the left-hand-side of a proof

end-proof . check for α-equivalence

26 / 49

Pause for breath

27 / 49

Developing Transformations

Dictionary of
transforms

Scripts of
HERMIT

commands

HERMIT

interactive
session

Using HERMIT
Codifyi

ng tra
nsfo

rm
s

Capturing abstractions

KURE

HERMIT
as a GHC

Plugin

Cycle of
Abstraction

HERMIT
Shell Commands

28 / 49

Adding Transformations to HERMIT

Three ways to add a transform:

Using Shell

Direct
No Argument Passing
Trying to avoiding “Yet another language”
(At some point the Shell will be replaced with a GHCI prompt)

Using GHC Rules

lightweight (can be included in the source code of the object program)
no need to recompile HERMIT
limited by the expressiveness of RULES

Using KURE

very expressive
Requires learning new DSL

29 / 49

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

30 / 49

What do we want our KURE DSL to do?

Consider the first case rewriting rule from the Haskell 98 Report.

(a) case e of { alts } = (\v -> case v of { alts }) e
where v is a new variable

Writing a rule that expresses this syntactical rewrite is straightforward.

-- Template Haskell based solution

rule_a :: ExpE -> Q ExpE

rule_a (CaseE e alts) = do

v <- newName "v"

return $ AppE (mkLamE [VarP v] $ CaseE (VarE v) alts) e

rule_a _ = fail "rule_a not applicable"

KURE is a DSL that allows the structured promotion of locally acting rules
into globally acting rules.

31 / 49

Basis of a Rewrite DSL

Combinator Purpose

id identity strategy
fail always failing strategy
S <+ S local backtracking
S ; S sequencing
all(S) apply S to each immediate child
<S> term apply S to term, giving a term result

32 / 49

Stratego Examples

Try a rewrite, and if it fails, do nothing.

try(s) = s <+ id

Repeatedly apply a rewrite, until it fails.

repeat(s) = try(s ; repeat(s))

Apply a rewrite in a topdown manner.

topdown(s) = s ; all(topdown(s))

New function for constant folding on an Add node.

EvalAdd : Add(Int(i),Int(j)) -> Int(<addS>(i,j))

33 / 49

DSL Formula

Propose a small set of primitives;

Unify these combinators round a small number of type(s);

Postulate the monad that implements the primitives;

Wrap some structure round this monad, our principal type.

After this, the primitives in this shallow embedding are easy to
implement, using the monad, typically

Construction of our type, the atoms of our solution;

Combinators for our type, to compose solutions;

Execution of our type, to give a result.

34 / 49

What is our Principal Type?

T t1 t2

R t = T t t

35 / 49

Basic Operations in KURE

Combinator Type

id ∀t1. T t1 t1
fail ∀t1, t2. T t1 t2
S <+ S ∀t1, t2. T t1 t2 → T t1 t2 → T t1 t2
S ; S ∀t1, t2, t3. T t1 t2 → T t2 t3 → T t1 t3

36 / 49

The KURE Monad

We list our requirements, then build our monad.

We want the ability to

Represent failure

create new global binders

have a context / understand binders

For historic reasons, we pull the environment out explicitly.

37 / 49

Implementation of Translate

data Translate c m a b = Translate

{ -- | Apply a ’Translate’ to a value

-- and its context.

apply :: c -> a -> m b}

-- | The primitive way of building a ’Translate’.

translate :: (c -> a -> m b) -> Translate c m a b

translate = Translate

-- | A ’Translate’ that shares the same source

-- and target type.

type Rewrite c m a = Translate c m a a

-- | The primitive way of building a ’Rewrite’.

rewrite :: (c -> a -> m a) -> Rewrite c m a

rewrite = translate

38 / 49

Translate and the Category Zoo

instance Functor m => Functor (Translate c m a)

instance Applicative m => Applicative (Translate c m a)

instance Alternative m => Alternative (Translate c m a)

instance Monad m => Monad (Translate c m a)

instance MonadCatch m => MonadCatch (Translate c m a)

instance MonadPlus m => MonadPlus (Translate c m a)

instance Monad m => Category (Translate c m)

instance MonadCatch m => CategoryCatch (Translate c m)

instance Monad m => Arrow (Translate c m)

instance MonadPlus m => ArrowZero (Translate c m)

instance MonadPlus m => ArrowPlus (Translate c m)

instance Monad m => ArrowApply (Translate c m)

instance (Monad m, Monoid b) => Monoid (Translate c m a b)

39 / 49

Lenses in KURE

-- | A ’Lens’ is a way to focus on a sub-structure

-- of type @b@ from a structure of type @a@.

newtype Lens c m a b = Lens (Translate c m a ((c,b), b -> m a))

-- | Apply a ’Rewrite’ at a point specified by a ’Lens’.

focusR :: Monad m => Lens c m a b -> Rewrite c m b -> Rewrite c m a

-- | Apply a ’Translate’ at a point specified by a ’Lens’.

focusT :: Monad m => Lens c m a b -> Translate c m b d

-> Translate c m a d

40 / 49

Where are we?

KURE allow us to build rewrite engines out of small
parts.

We can perform shallow and deep transformations over
a single type.

Most abstract syntax trees are constructed of trees of
multiple types.
Challenge – Can we extend our typed rewrites to work
over multiple types?

41 / 49

What is the type of all?

all :: ∀t1. R t1 → R t1

OR

all :: ∀t1, t2. R t1 → R t2

42 / 49

We use a local Universe

-- | Core is the sum type of all nodes in the AST that

-- we wish to be able to traverse.

data Core = GutsCore ModGuts -- ^ The module.

| ProgCore CoreProg -- ^ A program

| BindCore CoreBind -- ^ A binding group.

| DefCore CoreDef -- ^ A recursive definition.

| ExprCore CoreExpr -- ^ An expression.

| AltCore CoreAlt -- ^ A case alternative.

43 / 49

Example – β-reduction

This is the code for our β-reduction combinator.

betaReduce :: RewriteH CoreExpr

betaReduce = setFailMsg ("Beta-reduction failed: " ++ ...) $

do App (Lam v e1) e2 <- idR

return $ Let (NonRec v e2) e1

44 / 49

HERMIT Problems

What went wrong? What could be better?

The commands, and the way they act, are still low, low level

There are way too many commands!

Want higher-level combinators for worker/wrapper (contextually
aware)

The Shell language has grown legs, and walked away (want GHC)

Focus on correctness, not speed (-set-auto-corelint)

45 / 49

Larger Example: Deriving a better century

We selected the chapter Making a Century from the textbook Pearls
of Functional Algorithm Design.

The book is entirely dedicated to reasoning about Haskell programs,
with each chapter calculating an efficient program from an inefficient
specification program.

The program in Making a Century computes the list of all arithmetic
expressions formed from ascending digits, where juxtaposition, addition,
and multiplication evaluate to 100. For example, one possible solution is

100 = 12 + 34 + 5× 6 + 7 + 8 + 9

The derivation of an efficient program involves a substantial amount of
equational reasoning, and the use of a variety of proof techniques,
including fold/unfold transformation, structural induction, fold fusion, and
numerous auxiliary lemmas.

46 / 49

What happened while deriving a better century

During mechanization we discovered that several auxiliary properties
in the textbook are stated as assumptions without proof.

we suspect that they are deemed either “obvious” or “uninteresting”.

Assumption 6.2 also had a simple proof, but it relied on arithmetic
properties of Haskell’s built-in Int type (specifically, that m == n

=⇒ m <= n).

Two proof techniques are used in the textbook that HERMIT does
not directly support.

The first is the fold fusion law, which needs implication, which we do
not support.
The second involves postulating the existence of an auxiliary function.
We did manage to run the postulated function backwards, to verify the
calculation.

We have a plugin that provides the fold fusion law as a primitive.

47 / 49

Length of Calulations for Century

Calculation
Textbook HERMIT Commands

Lines Transformation Navigation Total

solutions 16 12 7 19
expand 19 18 20 38
Lemma 6.5 not given 4 4 8
Lemma 6.6 not given 2 1 3
Lemma 6.7 not given 2 0 2
Lemma 6.8 7 5 8 13
Lemma 6.9 1 4 4 8
Lemma 6.10 not given 23 13 36
Total 43 70 57 127

48 / 49

HERMIT Summary

A GHC plugin for interactive transformation of GHC Core programs

HERMIT is still in development

Can run different scripts for different modules

Current step: an equational reasoning framework that only allows
correctness preserving transformations (Reading, Writing, and Arithmetic)

Publications:

The HERMIT in the Machine (Haskell ’12) — describes the HERMIT
implementation
The HERMIT in the Tree (IFL ’12) — describes our experiences
mechanising existing program transformations
KURE: A Haskell embedded strategic programming language with
custom closed universes. (JFP) — describes our DSL for rewrites.
Reasoning with the HERMIT: Tool Support for Compile-time
Equational Reasoning on Haskell Programs (drafted)

cabal install hermit

49 / 49

