
A Guide Through

David Sabel

September 9, 2003

Contents

1 About HasFuse 2

2 Building HasFuse 2

3 Differences between HasFuse and GHC 3

3.1 Direct-call I/O . 3

3.2 GHC extensions you should not use 3

3.3 Optimisation levels in HasFuse 4

3.4 Compiler options, you should not use 4

3.5 New compiler options . 7

4 Examples 7

4.1 Different behaviours caused by a single transformation 7

4.1.1 Example for the “case eta expansion” 7

4.1.2 Example for the “full laziness” transformation 8

4.2 Basic applications of direct-call I/O 9

4.2.1 Encoding of directPutChar and directGetChar 9

4.2.2 Encoding of directPutStr and directGetLine 9

5 Further documentation 10

1

1 About HasFuse

HasFuse (Haskell with FUNDIO-based side effects) is a modification of the
Glasgow Haskell Compiler (GHC) ([The03b]). HasFuse allows you to use
non-strict direct-call I/O within Haskell by using unsafePerformIO in any
context. The semantics for this I/O are given by the FUNDIO calculus (see
[Sch03]).

This document contains some information about building and using Has-
Fuse. But for both you should use the GHC documentation ([The03b,
The03a]) too, because the aim of this paper isn’t to give a complete compiler
reference, we present only the differences between HasFuse and GHC.

2 Building HasFuse

For building HasFuse you need

• The HasFuse source1

• The source of GHC version 5.04.3.

• Everything what’s required to build GHC (another GHC, Happy). See
[The03a].

Then unpack both source archives (GHC and HasFuse). Let’s assume:

• GHC is in a tree with top-level directory fptools and

• HasFuse in a tree with top-level directory hasfuse.

Merge the source trees. This can easily be done, by copying the HasFuse
files over the GHC files. For example you can do this step with:

cp -r hasfuse/* fptools/

After that, you can create a build tree or use the source tree with top-level
directory fptools for building.

Building HasFuse is now identical to building GHC, so you should use the
GHC documentation especially the GHC building guide ([The03a]) for this
step.

Probably this works: Go to the fptools directory and type
1It’s available at http://www.ki.informatik.uni-frankfurt.de/∼sabel

2

http://www.ki.informatik.uni-frankfurt.de/~sabel

autoconf
(cd ghc && autoconf)

Then create the mk/build.mk (probably an empty file is enough). After
that, type

./configure
gmake

After building you should have a ghc-inplace at
fptools/ghc/compiler/ghc-inplace (or in your build tree path)
which can be used to compile programs with HasFuse.

3 Differences between HasFuse and GHC

3.1 Direct-call I/O

GHC offers the Haskell extension unsafePerformIO, but the use is limited
to a few special cases (see [The03b, Chapter 13] for more information). The
aim of this limitation is to preserve the pureness of Haskell.

HasFuse hasn’t this limitation. You can use unsafePerformIO in any con-
text you want. The underlying language is Haskell with unsafePerformIO,
so this language is no longer pure, but the direct-call I/O is no longer un-
safe, because the FUNDIO calculus gives the semantics for this I/O, which
is modelled by nondeterminism.

3.2 GHC extensions you should not use

This section contains information about GHC-specific extensions of Haskell
which you shouldn’t use for programs, you want to compile with HasFuse.

INLINE pragmas: The reason for that is that Inlining is not safe in the
meaning of the FUNDIO semantics. Notice: We didn’t turn off the
handling of INLINE-Pragmas ([The03b, section 7.6.1]) , so if you use
them, there’s no guarantee for correct behaviour of your compiled
programs.

RULES pragmas: HasFuse ignores RULES ([The03b, section 7.6.6]), be-
cause it has been to much work, to prove the built-in rules of GHC.

3

3.3 Optimisation levels in HasFuse

GHC supports three different levels for different optimisation, which are
available with the flags -O0 (same as no optimisation flag), -O1 (same as
-O) and -O2. HasFuse supports the same flags, but the performed optimisa-
tions are different from those, which are performed in the GHC. The most
important thing is, that the level 0 and 1 are proven for safeness. Level 2
isn’t proven, so you should use the flag -O2 only for testing purposes. Now
we give a short summary about the different levels.

-O0: This level only performs local transformations, the compilation process
is fast.

-O1: All optimisations that have been proven for safeness are performed.
Most of the global transformations aren’t performed, because we yet
haven’t analyzed them.

-O2: In difference to -O1 all global transformations, which aren’t obviously
unsafe are performed. We have no counterexamples, which show dif-
ferent behaviours between this level and level -O1, but nevertheless
this level is not proven as safe.

The tables 1 and 2 give a summary about the performed transformations
depending of the optimisation level and some information about switching
on or off a single transformation.

3.4 Compiler options, you should not use

This section contains information about some GHC options (flags), you
shouldn’t use for HasFuse. Most of these options are available in HasFuse,
but they have no effect. This design decision has been chosen, so that the
Makefiles for GHC can be used for HasFuse.

Common subexpression elimination: This transformation is unsafe in
our meaning, so the transformation is never performed. The flag
-fno-cse for turning off the transformation is available in HasFuse,
but it has no effect, so you shouldn’t use it.

Deforestation: This transformation hasn’t been proved for correctness. So
you shouldn’t use the -ffoldr-build-on flag. Because this transfor-
mation is based on RULES pragmas, you can’t turn on the transfor-
mation with this flag.

Interface Pragmas: HasFuse doesn’t use pragmas from interface files.
You can use the flag -fno-ignore-interface-pragmas to change this
behaviour, but nevertheless HasFuse ignores RULES, so you shouldn’t
use this flag.

4

Tranformation -O level correcta comments
0 1 2

eta expansion X X X X can be turned off with the flag -fno-
do-lambda-eta-expansion

let-to-case × X X Xb

case merging × X X X can be turned on with -fcase-merge,
can be turned off with -fno-case-
merge

eta reduction × X X X can be turned on with -fdo-eta-
reduction, can be turned off with
f-no-do-eta-reduction

RULES pragmas × × × ?c

Interface pragmas × × × ?d can partly be turned on with -fno-
ignore-interface-pragmas, but you
shouldn’t use this flag.

ain the meaning of the FUNDIO semantics
bdepends on a conjecture, which hasn’t been proven till now
cdepends on the rule
ddepends on the pragma

Table 1: Performed local transformations depending on the optimisation
level

5

tranformation -O level correcta comments
0 1 2

full laziness × × × ×

common subexpres-
sion elimination

× × × ×

let floating in × X X X

strictness analysis × × X ? can be turned on at optimisation
level 1 with the flag -fstrictness

cpr analyse × × X ? is only performed if strictness anal-
ysis is performed, if so it can be
turned on by -fno-cpr-off or be
turned off by -fcpr-off

worker/wrapper × × X ?

specialising × × X ?

specialising over con-
structors

× × X ?

deforestation × × X ? can partly be turned on by -ffoldr-
build-on (but you shouldn’t use it),
can be turned off by -fno-foldr-
build-on

UsageSP-Analyse × × × ? can be turned on at level 2 with the
flag -fusagesp

ain the meaning of the FUNDIO semantics

Table 2: Performed global transformations depending on the optimisation
level

6

3.5 New compiler options

This section contains information about new options, which you can use for
HasFuse. These options are not available in the GHC.

HasFuse related information The flag --hasfuse prints some help in-
formation about HasFuse.

Switching on strictness analysis Strictness analysis is off by default
(except at the unsafe optimisation level 2, which comes with -O2),
but you can turn on the strictness analysis at optimisation level 1 by
using the flag -fstrictness. The results off the analysis are then
used for local transformations2. The Worker/Wrapper transformation
is a global transformation and so it’s not performed at optimisation
level 1, also if -fstrictness is used.

4 Examples

4.1 Different behaviours caused by a single transformation

4.1.1 Example for the “case eta expansion”

The following program behaves wrongly regarding the FUNDIO semantics,
if it’s compiled with the GHC. The reason here is the implementation of the
so called “case eta expansion”.

modul: etacase.lhs

> module Main(main) where

> import System.IO.Unsafe(unsafePerformIO)

> z = unsafePerformIO (putStr "Print this text!\n")

> f = \x -> z ‘seq‘ (\y -> y)

> main = (f True) ‘seq‘ return ()

The correct behaviour in the meaning of FUNDIO is to print the text before
quitting the program.

With the GHC you can only get the correct behaviour, if you turn off the
eta expansion:

2These are the so called let-to-case and case-elimination transformations

7

ghc -O0 -o etacase etacase.lhs

./etacase

ghc -fno-do-lambda-eta-expansion -O0 -o etacase etacase.lhs

./etacase

Print this text!

HasFuse compiles the example correct at all optimisation levels.

4.1.2 Example for the “full laziness” transformation

The following program isn’t correct (in the FUNDIO meaning) compiled by
GHC at optimisation level 1 or 2. The reason for the wrong behaviour is
the “full laziness” transformation. This transformation isn’t performed in
HasFuse.

modul: fulllazy.lhs

> module Main(main) where

> import System.IO.Unsafe(unsafePerformIO)

> main = let f = \xs -> let z = unsafePerformIO getChar

> in z

> in

> do

> putStr ((f 1):" is the result of (f 1).\n")

> putStr ((f 2):" is the result of (f 2).\n")

The correct behaviour in FUNDIO is to perform two different calls to
getChar, but the GHC compiled program behaves different:

ghc -O1 -o fulllazy fulllazy.lhs

./fulllazy

AB

A is the result of (f 1).

A is the result of (f 2).

Compilation with HasFuse shows the correct behaviour:

ghc-inplace -O1 -o fulllazy fulllazy.lhs

_ _ _____

| | | | __ _ ___| ___| _ ___ ___ A modified version of GHC, version 5.04.3

| |_| |/ _‘ / __| |_ | | | / __|/ _ \ Type --hasfuse for details

| _ | (_| __ \ _|| |_| __ \ __/ This software comes with

|_| |_|__,_|___/_| __,_|___/___| ABSOLUTELY NO WARRANTY!

./fulllazy

AB

A is the result of (f 1).

B is the result of (f 2).

8

4.2 Basic applications of direct-call I/O

In this section we present the encoding of direct-call variants of the monadic
I/O functions putChar and getChar. Based on these definitions we give
encodings of a function that prints a full string and a function that reads
a line from the standard input. Both functions are encoded without using
monadic I/O.

These definitions aren’t very useful, but they should give you a feeling what
you can do with direct-call I/O in lazy functional language.

4.2.1 Encoding of directPutChar and directGetChar

The encoding of these operators is easy: We apply the unsafePerformIO-
Operator to the monadic functions. But we must be careful with
directGetChar. This operator needs a dummy argument, so that the defini-
tion is an abstraction. If we didn’t this, the right hand side of the definition
would be updated after the first call with the result of this call.

> directPutChar :: Char -> ()

> directPutChar c = unsafePerformIO (putChar c)

> directGetChar :: a -> Char

> directGetChar _ = unsafePerformIO getChar

4.2.2 Encoding of directPutStr and directGetLine

For these functions we need a sequentialisation of the I/O call. So we use
the seq operator.

> directPutStr :: String -> ()

> directPutStr [] = ()

> directPutStr (x:xs) = seq (directPutChar x) (directPutStr xs)

> directGetLine _ = let x = directGetChar ()

> in if x == ’\n’ then

> []

> else

> let

> res = (directGetLine ())

> in

> seq res (x:res)

If we used the following definition of directGetLine

> directGetLine _ = let x = directGetChar ()

> in if x == ’\n’ then

> []

> else

> x:(directGetLine ())

9

then the I/O would be lazy: A character is read at the time, when it’s
position in the resulting string is evaluated.

Now we can define a function echo, which firstly reads a string and then
puts it on the standard output:

> echo = let

> xs = directGetLine ()

> in

> seq xs (directPutStr xs)

5 Further documentation

HasFuse was developed as a part of [Sab03], where most of the local transfor-
mations of the GHC have been proven of correctness regarding the FUNDIO
([Sch03]) semantics.

For contact information or news about HasFuse take a look at
http://www.ki.informatik.uni-frankfurt.de/∼sabel.

References

[Sab03] David Sabel. Realisierung der Ein-/Ausgabe in einem Compiler für
Haskell bei Verwendung einer nichtdeterministischen Semantik.
Diplomarbeit (to appear), Institut für Informatik, J.W.Goethe-
Universität, Frankfurt, 2003.

[Sch03] Manfred Schmidt-Schauß. FUNDIO: A Lambda-Calculus with a
letrec, case, Constructors, and an IO-Interface: Approaching a
theory of unsafePerformIO. Draft from 22.06.03, 2003.

[The03a] The GHC Team. Building the Glasgow Functional Programming
Tools Suite. http://haskell.org/ghc/docs/5.04.3/, 2003.

[The03b] The GHC Team. The Glasgow Haskell Compiler User’s Guide,
Version 5.04. http://haskell.org/ghc/docs/5.04.3/, 2003.

10

http://www.ki.informatik.uni-frankfurt.de/~sabel
http://haskell.org/ghc/docs/5.04.3/
http://haskell.org/ghc/docs/5.04.3/

	About HasFuse
	Building HasFuse
	Differences between HasFuse and GHC
	Direct-call I/O
	GHC extensions you should not use
	Optimisation levels in HasFuse
	Compiler options, you should not use
	New compiler options

	Examples
	Different behaviours caused by a single transformation
	Example for the ``case eta expansion''
	Example for the ``full laziness'' transformation

	Basic applications of direct-call I/O
	Encoding of directPutChar and directGetChar
	Encoding of directPutStr and directGetLine

	Further documentation

