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● Previous Approaches:
○ Computationally Expensive
○ Datsets Rely on Human Annotations
○ Fine-Tuning Fails under Label Noise
○ Robustness Suffers

● TURN
○ Generally Applicable Methodology 
○ Computationally Tolerable
○ Better Robustness  

fine-TUning pre-trained models for Robustness under Noisy labels - 
TURN
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You all know this:

● Input -> Layers with Weights -> Output (Generative, Classification, …)

● Machine Learning

● Data Hungry

● Different Architectures

Neural Networks
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● Keep performance under:

○ Noise

○ Out of Distribution (OOD)

○ Domain shift

○ Variations (rotations, color shift, word order,...)

○ Adversarial attacks

Robustness
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[4]

Training
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Epochs

Error
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Dataset-Problems
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● Size of Datasets

● Human Annotation Impossible

● Severity of Noise Unclear

● Real World is Noisy (Importance of Robustness)
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● Already Trained Model with Saved Weights

● ImageNet [16]

○ 1000 Object Classes

○ 1.281.167 Training Images

● Robust Feature Extractor

Pre-trained
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[2]

Feature Extractor
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● Further Training of Pre-Trained Model

● Higher Accuracy at Specific Task or Better Robustness / Generalization

● Computationally Cheaper than Training from Scratch

● Possibility of Tailor Models

● Different Types:

○ Full Fine-Tuning (FFT)
○ Last Layer Retraining (LLR)

Fine-Tuning
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● Change in Training Labels

● Severity

● Symmetric (Uniformly Random Switches of Annotations)

● Asymmetric (Switches within Similar Categories)

● Instance (Switches within Similar Categories dependent on the Instance)

Label Noise
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● Detection of Corrupted Instances
○ Co-Teaching (train 2 NNs) [5]
○ DivideMix [6]
○ This is where TURN [1] is Located as Well

● Loss Function and Regularization Terms
○ Generalized Cross Entropy Loss [8]
○ Early Learning Regularization [9]

● Self-Supervised
○ SimCLR [7]

● Limited Research with PTMs under Noisy Labeled Datasets

Prior Work
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● Observation 1:
○ High Label Noise can Significantly Distort the Feature Extractor under FFT

 
● Observation 2:

○ FFT can Effectively Enhance the Feature Extractur under low Label Noise

Intuition
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[1]

Feature Extractor
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● Loop:

○ Step 1:
■ Use Pre-Trained Model to Extract Training Data with Correct Labels

○ Step2:
■ Use FFT with the Clean Training Set

Intuition
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Phase II
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Notation:

Mathematical Foundation
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Phase I: 
● Linea Probing (LP)
● Training of Classifier                  for 

● Weights are Updated Using Generalized Cross Entropy Loss:

TURN-Algorithm
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With q ∈ (0, 1] 
as a 
Hyperparameter
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Phase II:
● For

 

○ Create 

○ FFT with Cross-Entropy as Loss-Function

TURN-Algorithm
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Creation of 
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● Datasets
○ Clothing1M
○ WebVision
○ CIFAR-100

● Models
○ ViT-B/16       [10]
○ ResNet         [12]
○ ConvNeXt-t   [13]
○ CLIP-ViT-B   [11]
○ MAE-ViT-B   [14]
○ MSN-ViT-B   [15]

Experimental Setup / Specifics

22

● Label Noise
○ Variety for CIFAR-100
○ Real-World Noise in Clothing1M and 

WebVision

● Training Time
○ 20 Epochs LP
○ 5 Epochs FFT
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● Promising Results

● Robust Algorithm for Transfer of Knowledge from Pre-Trained Model to Target Dataset

● Better Results than Previous Algorithms (Compared Ones)

● Usable for Datasets with Unknown Label Noise

● Computationally Affordable (Need to Train Only 1 DNN) 

Results

23



12. August 
2016

Results
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Results
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● Robustness and Computational Cost are Essential 
● Dataset Generation is Almost Impossible in that Size -> Need for Methodology

● There is a Need for Further Analysis of Fine-Tuning Options Given its Importance
● Influence of Pre-Training on Later Fine-Tuning

● Show of Robustness ?
● Compared Algorithms Seem Insufficient
● Does it Work on Small Datasets?

Relevance / Future Work / Open Questions
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Questions?
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