

Seminar Künstliche Intelligenz

Paper:

"Fine tuning Pre trained Models for Robustness Under Noisy Labels"

Marco Cholewik

Fine tuning Pre trained Models for Robustness Under Noisy Labels

- Authors: Sumyeong Ahn¹, Sihyeon Kim², Jongwoo Ko², Se-Young Yun²
- Institutes: ¹Michigan State University, ²Korea Advanced Institute of Science and Technology
- Publication year: 2024
- Conference: Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI)
- Pages: 3643-3651

Table of Contents

Phase I

- Motivation
- Background
- Prior work
- Intuition

Phase II

- Mathematic foundation
- Setup
- Results
- Future Work / Relevance

fine-TUning pre-trained models for Robustness under Noisy labels - TURN

- Previous Approaches:
 - Computationally Expensive
 - Datsets Rely on Human Annotations
 - Fine-Tuning Fails under Label Noise
 - Robustness Suffers
- TURN
 - Generally Applicable Methodology
 - Computationally Tolerable
 - Better Robustness

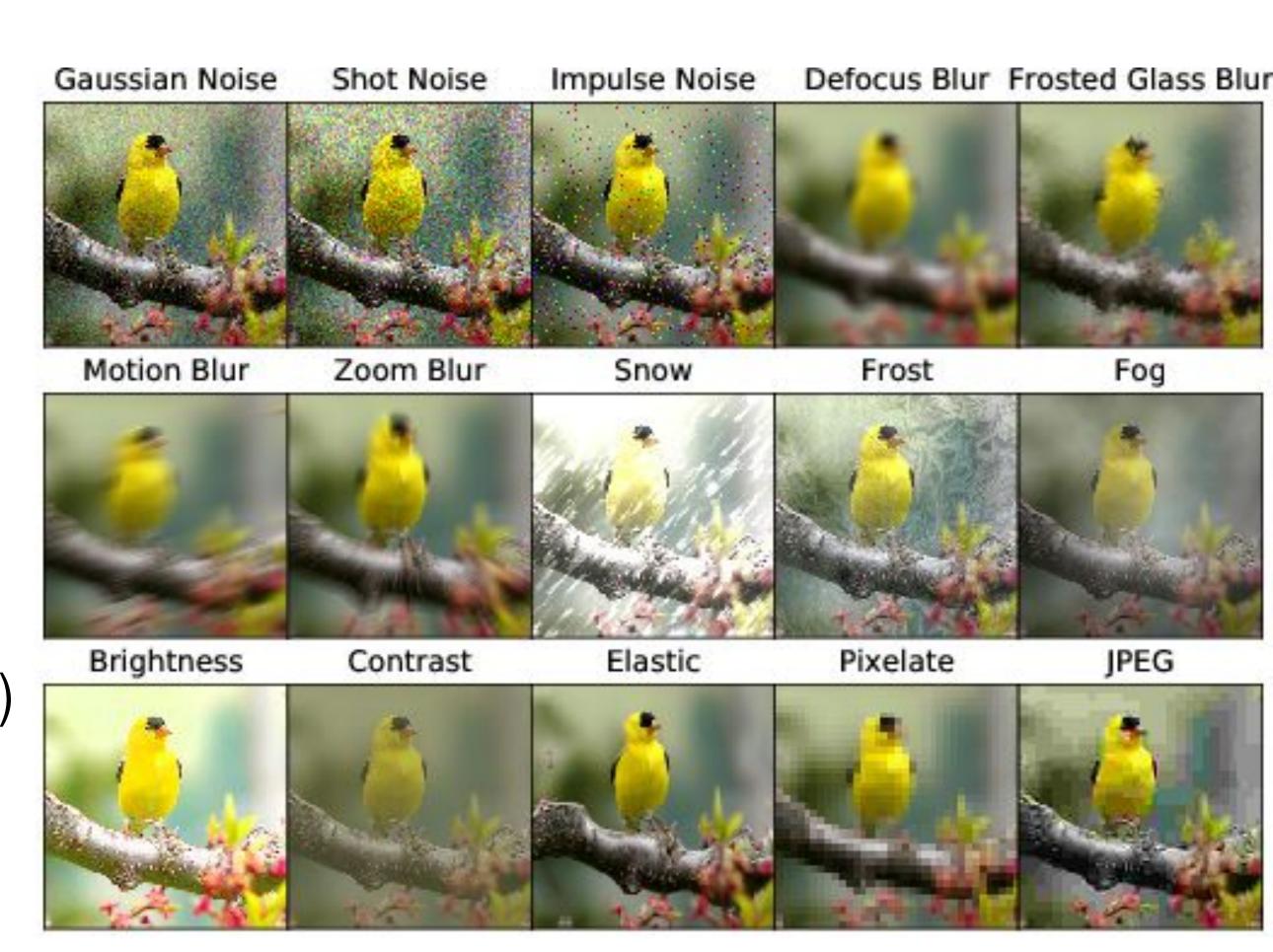
Neural Networks

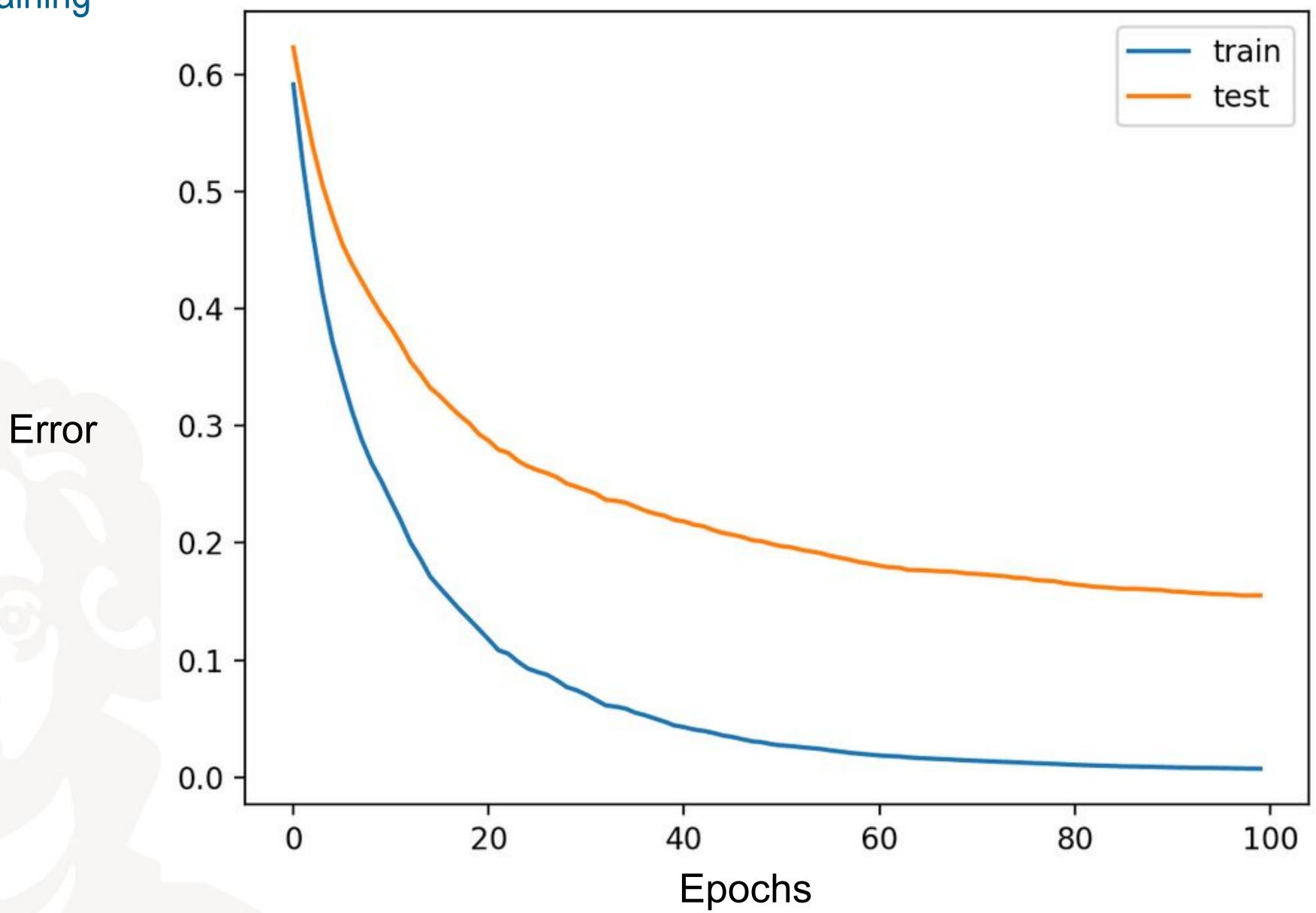
You all know this:

- Input -> Layers with Weights -> Output (Generative, Classification, ...)
- Machine Learning
- Data Hungry
- Different Architectures

Robustness

- Keep performance under:
 - Noise
 - Out of Distribution (OOD)
 - Domain shift
 - Variations (rotations, color shift, word order,...)
 - Adversarial attacks





[4]

Dataset-Problems

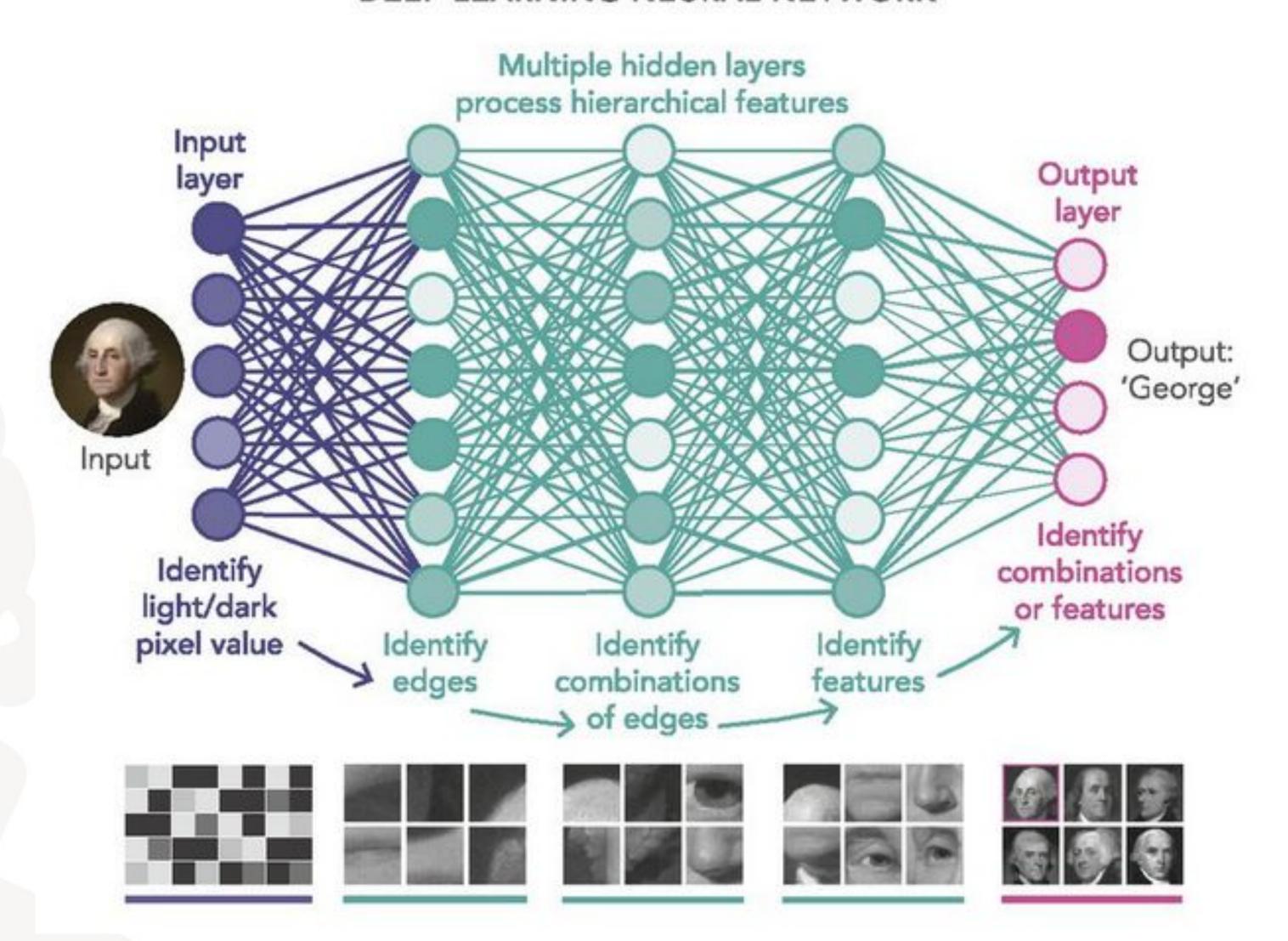
- Size of Datasets
- Human Annotation Impossible
- Severity of Noise Unclear
- Real World is Noisy (Importance of Robustness)

Pre-trained

- Already Trained Model with Saved Weights
- ImageNet [16]
 - 1000 Object Classes
 - 1.281.167 Training Images
- Robust Feature Extractor

Feature Extractor

DEEP LEARNING NEURAL NETWORK



[2]

Fine-Tuning

- Further Training of Pre-Trained Model
- Higher Accuracy at Specific Task or Better Robustness / Generalization
- Computationally Cheaper than Training from Scratch
- Possibility of Tailor Models
- Different Types:
 - Full Fine-Tuning (FFT)
 - Last Layer Retraining (LLR)

Label Noise

- Change in Training Labels
- Severity
- Symmetric (Uniformly Random Switches of Annotations)
- Asymmetric (Switches within Similar Categories)
- Instance (Switches within Similar Categories dependent on the Instance)

Prior Work

- Detection of Corrupted Instances
 - Co-Teaching (train 2 NNs) [5]
 - DivideMix [6]
 - This is where TURN [1] is Located as Well
- Loss Function and Regularization Terms
 - Generalized Cross Entropy Loss [8]
 - Early Learning Regularization [9]
- Self-Supervised
 - o SimCLR [7]
- Limited Research with PTMs under Noisy Labeled Datasets

Intuition

- Observation 1:
 - High Label Noise can Significantly Distort the Feature Extractor under FFT

- Observation 2:
 - FFT can Effectively Enhance the Feature Extractur under low Label Noise

Feature Extractor

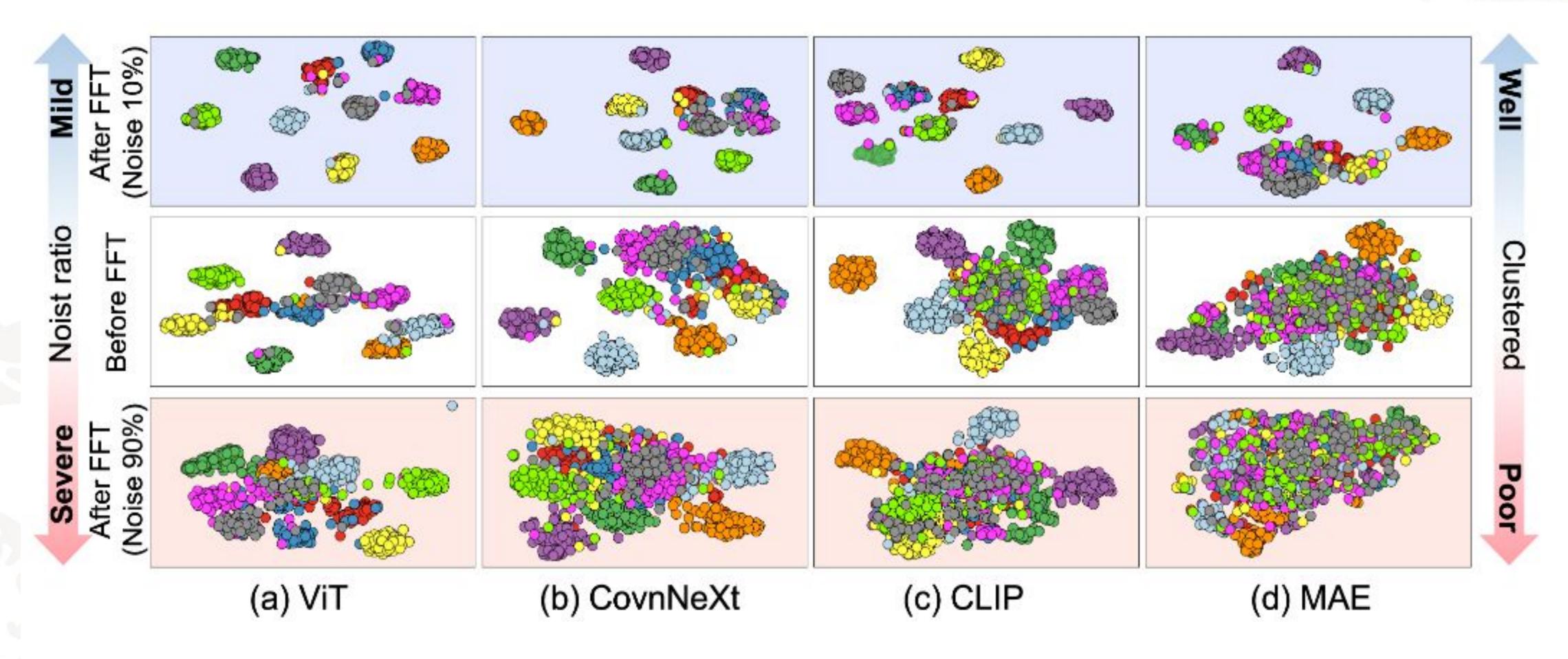


Figure 2: Illustration about tuning characteristics under noisy labeled dataset. We plot t-SNE results before and after FFT on the noise ratio of 90% and 10% datasets. Simply speaking, 60% shows well-clustered features while 90% shows poorly-clustered result.

[1]

Intuition

- Loop:
 - Step 1:
 - Use Pre-Trained Model to Extract Training Data with Correct Labels
 - Step2:
 - Use FFT with the Clean Training Set

Mathematical Foundation

Notation:

- Dataset: $D_{train} = \{x_i, \hat{y}_i\}_{i=1}^N$, with x_i being the image and \hat{y}_i being the given label (can be wrong/noisy)
- Linear Classifier: $g(z; \phi)$, taking an input z and with ϕ as the updatable weights
- Pre-trained Feature Extractor: $f(x;\theta)$, taking an input x and with θ as the updatable weights
- Gaussian Mixed Model (GMM) Threshold: τ for deciding which images to keep in the cleaned dataset
- Number of Epochs: E_{LP} and E_{FFT}

TURN-Algorithm

Phase I:

- Linea Probing (LP)
- ullet Training of Classifier $g(z_i;\phi)$ for E_{LP}

Weights are Updated Using Generalized Cross Entropy Loss:

$$\mathcal{L}_{GCE} = rac{1 - g(z_i; \phi)^q}{q}$$

With $q \in (0, 1]$ as a Hyperparameter

TURN-Algorithm

Phase II:

ullet For E_{FFT}

 \circ Create D_{Clean}

FFT with Cross-Entropy as Loss-Function

Creation of D_{Clean}

$$egin{aligned} n &= min_{x \in \{1,...,C\}} \mid D_{clean} \mid \ c &= Class \end{aligned}$$

$$D_{clean} = \cup_{c=1}^{C} U(D_{clean}^{c}, n)$$

The new dataset is created with n randomly chosen samples from each class with loss $\mathcal{L}_{CE}(g(f(x_i;\theta);\phi),\hat{y}_i) < \tau$

Experimental Setup / Specifics

Datasets

Dataset	# class	# train	# valid	# test	
CIFAR-100	100	47.5K	2.5K	10K	
Clothing 1M	14	1M	14K	10K	
WebVision	1,000	2.4M	_	50K	

- Models
 - ViT-B/16 [10]
 - ResNet [12]
 - ConvNeXt-t
 - o CLIP-ViT-B [11]
 - MAE-ViT-B [14]
 - MSN-ViT-B

- Label Noise
 - Variety for CIFAR-100
 - Real-World Noise in Clothing1M and WebVision
- Training Time
 - 20 Epochs LP
 - 5 Epochs FFT

Results

- Promising Results
- Robust Algorithm for Transfer of Knowledge from Pre-Trained Model to Target Dataset
- Better Results than Previous Algorithms (Compared Ones)
- Usable for Datasets with Unknown Label Noise
- Computationally Affordable (Need to Train Only 1 DNN)

Results

Tuning		CIFAR-100								
Туре		Symm. 0.6	Symm. 0.9	Asym. 0.4	Inst. 0.4	Symm. 0.6	Symm. 0.9	Asym. 0.4	Inst. 0.4	
	9/1/1/1	ViT-B/16				ConvNeXt-T				
-20	CE	88.45±0.59	62.31±1.51	61.25±1.52	64.42±0.14	79.12±0.32	54.72±1.01	68.31±0.52	57.61 ± 0.40	
FFT	GCE	89.82±1.32	46.51 ± 0.62	83.73 ± 0.31	1.31 ± 0.60	81.53±0.52	62.31 ± 0.82	79.52 ± 0.73	1.17 ± 0.21	
	ELR	88.52±0.18	63.52 ± 0.52	77.83 ± 0.52	83.34 ± 0.27	78.93±0.68	51.52±0.74	74.62 ± 0.42	67.14 ± 0.32	
	CE	81.20±0.49	64.17±0.62	61.15±1.24	61.62±0.04	70.67±0.69	53.14±0.26	54.83±0.14	62.15±0.31	
	GCE	83.19±0.91	81.21±0.15	76.32 ± 0.63	43.11±0.20	73.76±1.32	65.21±0.83	70.26 ± 0.25	5.00±0.05	
LP	ELR	81.23±0.24	65.58±0.62	64.37 ± 0.83	69.43±0.00	70.95±0.16	52.38±0.83	57.15±0.52	61.31±0.21	
	DMix	84.31±0.28	80.72±0.52	82.62±0.73	84.26±0.32	74.92±0.92	68.25±1.14	72.41±0.25	65.73±0.52	
	UNC	83.15±0.46	80.23±1.25	83.51±1.18	84.32±0.31	71.12±0.71	60.35 ± 0.76	63.92±0.29	69.25±0.3	
LP-FFT	Ours	90.62±0.42	84.35±1.13	88.13±1.00	87.57±0.15	83.83±0.52	70.01±1.32	81.28±1.12	73.40±0.13	
	100	MAE-ViT-B				MSN-ViT-B				
0.000000000	CE	60.21±0.52	7.58 ± 0.23	55.48 ± 0.52	50.70 ± 0.32	67.42±0.28	5.52 ± 0.13	57.35±0.74	62.24±0.41	
FFT	GCE	58.47±0.92	3.06 ± 0.41	60.54 ± 0.85	1.00 ± 0.00	65.51±0.77	7.16 ± 0.32	61.58 ± 0.52	1.00 ± 0.00	
	ELR	63.24±0.62	7.84 ± 0.13	61.47 ± 0.52	48.24 ± 0.52	67.19±0.63	5.00 ± 0.24	70.58 ± 0.75	58.14 ± 0.42	
	CE	48.31±0.86	20.29±0.15	38.98±0.53	44.62±0.75	60.01±0.65	22.82±0.62	47.72±0.86	63.85±0.53	
	GCE	49.82±0.73	14.13 ± 0.72	48.27±0.65	1.79 ± 0.36	47.75±0.86	14.15±0.83	42.49 ± 0.82	1.45 ± 0.74	
LP	ELR	47.88±0.72	17.26 ± 0.62	39.32±0.83	46.52±0.53	60.21±0.46	20.72 ± 0.65	51.04 ± 0.25	61.13±0.54	
	DMix	59.46±0.93	24.89 ± 0.86	55.64 ± 0.72	51.28±0.43	70.28±0.52	42.58±0.67	65.51±0.85	61.45±0.26	
	UNC	37.13±0.52	21.32±0.57	34.21±0.86	39.15±1.24	67.15±0.98	51.82±0.96	61.02±0.74	66.32±1.23	
LP-FFT	Ours	64.33±0.26	28.83±0.75	65.97±1.00	56.53±1.32	79.52±0.73	54.35±0.64	75.33±0.24	69.13±1.42	
	14.7 (5.45.24)	CLIP-ViT-B				ResNet-50				
121111	CE	80.17±0.50	26.84 ± 0.94	64.31±0.85	72.66 ± 0.30	66.12±1.32	0.75 ± 0.61	51.98±1.07	56.12±2.58	
FFT	GCE	81.56±1.01	3.18 ± 0.68	78.35 ± 0.87	1.13 ± 0.12	55.78±0.42	5.14 ± 1.52	57.04 ± 0.87	1.21 ± 0.25	
	ELR	76.24 ± 0.51	32.27 ± 1.18	75.38 ± 1.17	71.66 ± 0.56	65.38±0.69	8.51±1.59	61.21 ± 1.10	56.60 ± 1.55	
	CE	74.24±0.91	52.17±1.18	53.99±1.79	63.09±1.33	67.19±0.52	49.17±1.70	53.52±2.00	54.95±2.22	
	GCE	79.66±1.13	65.49±1.35	72.91±0.36	19.87±0.43	65.21±1.52	49.32±0.76	58.24±2.19	57.58±1.80	
LP	ELR	73.92±1.21	51.94±0.60	56.57±2.67	65.11±1.72	65.14±0.93	49.53±1.09	55.08±1.49	54.51±1.21	
	DMix	77.97±0.99	69.55±0.90	75.17±1.70	71.12±0.38	71.03±0.92	56.54±0.54	62.85±1.45	60.40±1.18	
	UNC	73.54±0.52	59.55±1.07	67.37±1.38	72.47±2.68	70.03±1.53	58.08±0.92	66.41±0.89	67.79±0.61	
LP-FFT	Ours	84.12±0.82	72.55±1.45	78.41±0.89	80.96±1.97	73.32±0.93	59.64±0.60	69.38±1.00	69.78±0.76	

Results

	Clothing 1 M								
Architecture			LP				FFT		LP+FFT
	CE	GCE	ELR	DivideMix	UNICON	CE	GCE	ELR	Ours
ViT-B/16	67.83 / 67.54	67.46 / 67.46	66.91 / 66.91	68.13 / 68.13	68.42 / 68.42	68.98 / 68.98	69.74 / 69.74	68.73 / 68.73	70.28 / 70.28
ConvNeXt-T	64.82 / 64.81	64.59 / 64.59	64.17 / 64.17	66.12 / 65.42	67.33 / 66.92	68.80 / 68.80	68.92 / 68.92	69.19 / 68.52	69.63 / 69.63
MAE-ViT-B	5.06 / 5.06	5.92 / 5.92	8.28 / 8.28	8.04 / 8.04	8.52 / 8.52	61.31 / 61.31	60.80 / 60.80	61.51 / 61.51	61.96 / 61.96
MSN-ViT-B	6.77 / 6.77	6.20 / 6.20	7.64 / 7.64	6.42 / 6.42	6.31 / 6.31	66.88 / 63.38	67.06 / 65.41	66.32 / 66.32	69.13 / 69.13
ResNet-50	7.08 / 7.08	7.18 / 7.18	6.68 / 6.68	8.13 / 8.13	8.24 / 8.24	66.10 / 66.02	66.19 / 66.19	66.19 / 66.19	66.31 / 66.31
2					WebVision				
Architecture			LP				FFT		LP+FFT
	CE	GCE	ELR	DivideMix	UNICON	CE	GCE	ELR	Ours
ViT-B/16	84.62 / 84.48	84.32 / 84.24	84.48 / 84.32	84.72 / 84.72	85.68 / 85.68	84.20 / 83.04	83.40 / 83.40	84.92 / 83.72	85.96 / 85.92
ConvNeXt-T	85.24 / 85.24	85.12 / 85.04	86.28 / 86.28	86.40 / 86.40	86.24 / 86.24	84.00 / 82.68	85.40 / 84.92	84.52 / 83.44	87.16 / 86.44
MAE-ViT-B	48.00 / 48.00	47.32 / 47.28	49.76 / 49.76	59.40 / 58.44	56.96 / 53.80	67.48 / 65.64	63.16 / 62.84	67.80 / 67.80	69.45 / 68.45
MSN-ViT-B	77.40 / 77.40	74.40 / 74.40	74.00 / 74.00	76.56 / 76.40	77.72 / 77.34	77.04 / 77.80	72.28 / 72.28	74.88 / 72.28	78.36 / 75.40
ResNet-50	84.88 / 84.72	81.68 / 81.68	84.96 / 84.96	85.16 / 85.16	85.04 / 85.04	78.00 / 76.44	77.04 / 70.92	80.44 / 77.44	85.36 / 85.36

Relevance / Future Work / Open Questions

- Robustness and Computational Cost are Essential
- Dataset Generation is Almost Impossible in that Size -> Need for Methodology

- There is a Need for Further Analysis of Fine-Tuning Options Given its Importance
- Influence of Pre-Training on Later Fine-Tuning

- Show of Robustness?
- Compared Algorithms Seem Insufficient
- Does it Work on Small Datasets?

Questions?

- [1]: Ahn, S., Kim, S., Ko, J., & Yun, S. (2024). Fine-tuning Pre-trained Models for Robustness under Noisy Labels. *International Joint Conference on Artificial Intelligence*, 3643–3651.
 https://doi.org/10.24963/ijcai.2024/403
- [2]: M.M. Waldrop (2019). What are the limits of deep learning?, Proc. Natl. Acad. Sci. U.S.A. 116 (4) 1074-1077, https://doi.org/10.1073/pnas.1821594116
- [3]: Hendrycks, D., & Dietterich, T. (2019). Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. *Proceedings of the International Conference on Learning Representations*.
- [4]: Brownlee, J. (2021, March 15). *Tune XGBooSt performance with learning curves*. Machinelearningmastery. Retrieved July 8, 2025, from https://machinelearningmastery.com/tune-xgboost-performance-with-learning-curves/

- [5]: B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. *Advances in neural information processing systems*, 31, 2018.
- [6]: Li, J., Hoi, S. C., & Socher, R. (2020). DivideMix: Learning with Noisy Labels as Semi-supervised Learning. *arXiv* (Cornell University). https://doi.org/10.48550/arxiv.2002.07394
- [7]: Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. *arXiv* (Cornell University). https://doi.org/10.48550/arxiv.2002.05709
- [8]: Zhang, Z., & Sabuncu, M. R. (2018). Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. *arXiv* (*Cornell University*). https://doi.org/10.48550/arxiv.1805.07836
- [9]: Liu, S., Niles-Weed, J., Razavian, N., & Fernandez-Granda, C. (2020).
 Early-Learning regularization prevents memorization of noisy labels. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2007.00151

- [10]: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021.
- [11]: A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.
- [12]: K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [13]: Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11976–11986, 2022.

- [14]: K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pages 16000–16009, 2022.
- [15]: M. Assran, M. Caron, I. Misra, P. Bojanowski, F. Bordes, P. Vincent, A. Joulin, M. Rabbat, and N. Ballas. Masked siamese networks for label-efficient learning. In *European Conference on Computer Vision*, pages 456–473. Springer, 2022.
- [16]: ImageNet. (n.d.). https://www.image-net.org/update-mar-11-2021.php